
PHPUnit Manual
Release latest

Sebastian Bergmann

Nov 09, 2019

Contents

1 Installing PHPUnit 3
1.1 Requirements . 3
1.2 PHP Archive (PHAR) . 3

1.2.1 Verifying PHPUnit PHAR Releases . 4
1.3 Composer . 5
1.4 Global Installation . 5

2 Writing Tests for PHPUnit 7
2.1 Test Dependencies . 8
2.2 Data Providers . 11
2.3 Testing Exceptions . 16
2.4 Testing PHP Errors, Warnings, and Notices . 17
2.5 Testing Output . 19
2.6 Error output . 20

2.6.1 Edge cases . 22

3 The Command-Line Test Runner 25
3.1 Command-Line Options . 26
3.2 TestDox . 33

4 Fixtures 35
4.1 More setUp() than tearDown() . 38
4.2 Variations . 38
4.3 Sharing Fixture . 38
4.4 Global State . 39

5 Organizing Tests 41
5.1 Composing a Test Suite Using the Filesystem . 41
5.2 Composing a Test Suite Using XML Configuration . 42

6 Risky Tests 45
6.1 Useless Tests . 45
6.2 Unintentionally Covered Code . 45
6.3 Output During Test Execution . 45
6.4 Test Execution Timeout . 46
6.5 Global State Manipulation . 46

i

7 Incomplete and Skipped Tests 47
7.1 Incomplete Tests . 47
7.2 Skipping Tests . 48
7.3 Skipping Tests using @requires . 49

8 Test Doubles 51
8.1 Stubs . 52
8.2 Mock Objects . 56
8.3 Prophecy . 62
8.4 Mocking Traits and Abstract Classes . 63
8.5 Stubbing and Mocking Web Services . 64

9 Code Coverage Analysis 67
9.1 Software Metrics for Code Coverage . 67
9.2 Whitelisting Files . 68
9.3 Ignoring Code Blocks . 69
9.4 Specifying Covered Code Parts . 70
9.5 Edge Cases . 72
9.6 Speeding Up Code Coverage with Xdebug . 73

10 Logging 75
10.1 Test Results (XML) . 75
10.2 Code Coverage (XML) . 76
10.3 Code Coverage (TEXT) . 77

11 Extending PHPUnit 79
11.1 Subclass PHPUnit\Framework\TestCase . 79
11.2 Write custom assertions . 79
11.3 Extending the TestRunner . 81

11.3.1 Configuring extensions . 82

12 Assertions 85
12.1 Static vs. Non-Static Usage of Assertion Methods . 85
12.2 assertArrayHasKey() . 85
12.3 assertClassHasAttribute() . 86
12.4 assertArraySubset() . 87
12.5 assertClassHasStaticAttribute() . 88
12.6 assertContains() . 88
12.7 assertStringContainsString() . 89
12.8 assertStringContainsStringIgnoringCase() . 90
12.9 assertContainsOnly() . 91
12.10 assertContainsOnlyInstancesOf() . 91
12.11 assertCount() . 92
12.12 assertDirectoryExists() . 93
12.13 assertDirectoryIsReadable() . 94
12.14 assertDirectoryIsWritable() . 94
12.15 assertEmpty() . 95
12.16 assertEqualXMLStructure() . 96
12.17 assertEquals() . 98
12.18 assertEqualsCanonicalizing() . 102
12.19 assertEqualsIgnoringCase() . 103
12.20 assertEqualsWithDelta() . 103
12.21 assertFalse() . 104
12.22 assertFileEquals() . 105
12.23 assertFileExists() . 106

ii

12.24 assertFileIsReadable() . 106
12.25 assertFileIsWritable() . 107
12.26 assertGreaterThan() . 108
12.27 assertGreaterThanOrEqual() . 108
12.28 assertInfinite() . 109
12.29 assertInstanceOf() . 110
12.30 assertIsArray() . 111
12.31 assertIsBool() . 111
12.32 assertIsCallable() . 112
12.33 assertIsFloat() . 113
12.34 assertIsInt() . 113
12.35 assertIsIterable() . 114
12.36 assertIsNumeric() . 115
12.37 assertIsObject() . 115
12.38 assertIsResource() . 116
12.39 assertIsScalar() . 117
12.40 assertIsString() . 118
12.41 assertIsReadable() . 118
12.42 assertIsWritable() . 119
12.43 assertJsonFileEqualsJsonFile() . 120
12.44 assertJsonStringEqualsJsonFile() . 120
12.45 assertJsonStringEqualsJsonString() . 121
12.46 assertLessThan() . 122
12.47 assertLessThanOrEqual() . 123
12.48 assertNan() . 124
12.49 assertNull() . 124
12.50 assertObjectHasAttribute() . 125
12.51 assertRegExp() . 126
12.52 assertStringMatchesFormat() . 126
12.53 assertStringMatchesFormatFile() . 128
12.54 assertSame() . 128
12.55 assertStringEndsWith() . 130
12.56 assertStringEqualsFile() . 130
12.57 assertStringStartsWith() . 131
12.58 assertThat() . 132
12.59 assertTrue() . 133
12.60 assertXmlFileEqualsXmlFile() . 134
12.61 assertXmlStringEqualsXmlFile() . 135
12.62 assertXmlStringEqualsXmlString() . 136

13 Annotations 139
13.1 @author . 139
13.2 @after . 139
13.3 @afterClass . 140
13.4 @backupGlobals . 140
13.5 @backupStaticAttributes . 141
13.6 @before . 142
13.7 @beforeClass . 143
13.8 @codeCoverageIgnore* . 143
13.9 @covers . 143
13.10 @coversDefaultClass . 144
13.11 @coversNothing . 145
13.12 @dataProvider . 145
13.13 @depends . 145

iii

13.14 @doesNotPerformAssertions . 145
13.15 @group . 145
13.16 @large . 146
13.17 @medium . 146
13.18 @preserveGlobalState . 146
13.19 @requires . 147
13.20 @runTestsInSeparateProcesses . 147
13.21 @runInSeparateProcess . 147
13.22 @small . 148
13.23 @test . 148
13.24 @testdox . 148
13.25 @testWith . 149
13.26 @ticket . 150
13.27 @uses . 150

14 The XML Configuration File 151
14.1 The <phpunit> Element . 151

14.1.1 The backupGlobals Attribute . 151
14.1.2 The backupStaticAttributes Attribute . 151
14.1.3 The bootstrap Attribute . 151
14.1.4 The cacheResult Attribute . 151
14.1.5 The cacheResultFile Attribute . 152
14.1.6 The cacheTokens Attribute . 152
14.1.7 The colors Attribute . 152
14.1.8 The columns Attribute . 152
14.1.9 The convertDeprecationsToExceptions Attribute 152
14.1.10 The convertErrorsToExceptions Attribute . 152
14.1.11 The convertNoticesToExceptions Attribute . 152
14.1.12 The convertWarningsToExceptions Attribute . 153
14.1.13 The disableCodeCoverageIgnore Attribute . 153
14.1.14 The forceCoversAnnotation Attribute . 153
14.1.15 The printerClass Attribute . 153
14.1.16 The printerFile Attribute . 153
14.1.17 The processIsolation Attribute . 153
14.1.18 The stopOnError Attribute . 153
14.1.19 The stopOnFailure Attribute . 153
14.1.20 The stopOnIncomplete Attribute . 154
14.1.21 The stopOnRisky Attribute . 154
14.1.22 The stopOnSkipped Attribute . 154
14.1.23 The stopOnWarning Attribute . 154
14.1.24 The stopOnDefect Attribute . 154
14.1.25 The failOnRisky Attribute . 154
14.1.26 The failOnWarning Attribute . 154
14.1.27 The beStrictAboutChangesToGlobalState Attribute 155
14.1.28 The beStrictAboutOutputDuringTests Attribute 155
14.1.29 The beStrictAboutResourceUsageDuringSmallTests Attribute 155
14.1.30 The beStrictAboutTestsThatDoNotTestAnything Attribute 155
14.1.31 The beStrictAboutTodoAnnotatedTests Attribute 155
14.1.32 The beStrictAboutCoversAnnotation Attribute 155
14.1.33 The ignoreDeprecatedCodeUnitsFromCodeCoverage Attribute 155
14.1.34 The enforceTimeLimit Attribute . 155
14.1.35 The defaultTimeLimit Attribute . 156
14.1.36 The timeoutForSmallTests Attribute . 156
14.1.37 The timeoutForMediumTests Attribute . 156

iv

14.1.38 The timeoutForLargeTests Attribute . 156
14.1.39 The testSuiteLoaderClass Attribute . 156
14.1.40 The testSuiteLoaderFile Attribute . 156
14.1.41 The defaultTestSuite Attribute . 156
14.1.42 The verbose Attribute . 156
14.1.43 The stderr Attribute . 156
14.1.44 The reverseDefectList Attribute . 157
14.1.45 The registerMockObjectsFromTestArgumentsRecursively Attribute 157
14.1.46 The extensionsDirectory Attribute . 157
14.1.47 The executionOrder Attribute . 157
14.1.48 The resolveDependencies Attribute . 157
14.1.49 The testdox Attribute . 157
14.1.50 The noInteraction Attribute . 157

14.2 The <testsuites> Element . 157
14.2.1 The <testsuite> Element . 158

14.3 The <groups> Element . 158
14.4 The <testdoxGroups> Element . 158
14.5 The <filter> Element . 159
14.6 The <listeners> Element . 159

14.6.1 The <listener> Element . 159
14.7 The <extensions> Element . 160

14.7.1 The <extension> Element . 160
14.8 The <logging> Element . 161

14.8.1 The <log> Element . 161
14.9 The <php> Element . 162

14.9.1 The <includePath> Element . 162
14.9.2 The <ini> Element . 162
14.9.3 The <const> Element . 162
14.9.4 The <var> Element . 162
14.9.5 The <env> Element . 163
14.9.6 The <get> Element . 163
14.9.7 The <post> Element . 163
14.9.8 The <cookie> Element . 164
14.9.9 The <server> Element . 164
14.9.10 The <files> Element . 164
14.9.11 The <request> Element . 164

15 Bibliography 167

16 Copyright 169

v

vi

PHPUnit Manual, Release latest

Edition for PHPUnit latest. Updated on Nov 09, 2019.

Sebastian Bergmann

This work is licensed under the Creative Commons Attribution 3.0 Unported License.

Contents:

Contents 1

PHPUnit Manual, Release latest

2 Contents

CHAPTER 1

Installing PHPUnit

1.1 Requirements

PHPUnit latest requires PHP 7.2; using the latest version of PHP is highly recommended.

PHPUnit requires the dom and json extensions, which are normally enabled by default.

PHPUnit also requires the pcre, reflection, and spl extensions. These standard extensions are enabled by default and
cannot be disabled without patching PHP’s build system and/or C sources.

The code coverage report feature requires the Xdebug (2.7.0 or later) and tokenizer extensions. Generating XML
reports requires the xmlwriter extension.

1.2 PHP Archive (PHAR)

The easiest way to obtain PHPUnit is to download a PHP Archive (PHAR) that has all required (as well as some
optional) dependencies of PHPUnit bundled in a single file.

The phar extension is required for using PHP Archives (PHAR).

If the Suhosin extension is enabled, you need to allow execution of PHARs in your php.ini:

suhosin.executor.include.whitelist = phar

The PHPUnit PHAR can be used immediately after download:

$ wget https://phar.phpunit.de/phpunit-latest.phar
$ php phpunit-latest.phar --version
PHPUnit x.y.z by Sebastian Bergmann and contributors.

It is a common practice to make the PHAR executable:

$ wget https://phar.phpunit.de/phpunit-latest.phar
$ chmod +x phpunit-latest.phar
$./phpunit-latest.phar --version

3

http://php.net/manual/en/dom.setup.php
http://php.net/manual/en/json.installation.php
http://php.net/manual/en/pcre.installation.php
http://php.net/manual/en/reflection.installation.php
http://php.net/manual/en/spl.installation.php
http://xdebug.org/
http://php.net/manual/en/tokenizer.installation.php
http://php.net/manual/en/xmlwriter.installation.php
http://php.net/phar
http://php.net/manual/en/phar.installation.php
http://suhosin.org/
https://phar.phpunit.de/phpunit
https://phar.phpunit.de/phpunit

PHPUnit Manual, Release latest

PHPUnit x.y.z by Sebastian Bergmann and contributors.

1.2.1 Verifying PHPUnit PHAR Releases

All official releases of code distributed by the PHPUnit Project are signed by the release manager for the release. PGP
signatures and SHA256 hashes are available for verification on phar.phpunit.de.

The following example details how release verification works. We start by downloading phpunit.phar as well as
its detached PGP signature phpunit.phar.asc:

$ wget https://phar.phpunit.de/phpunit-latest.phar
$ wget https://phar.phpunit.de/phpunit-latest.phar.asc

We want to verify PHPUnit’s PHP Archive (phpunit-x.y.phar) against its detached signature (phpunit-x.
y.phar.asc):

$ gpg phpunit-latest.phar.asc
gpg: Signature made Sat 19 Jul 2014 01:28:02 PM CEST using RSA key ID 6372C20A
gpg: Can't check signature: public key not found

We don’t have the release manager’s public key (6372C20A) in our local system. In order to proceed with the verifica-
tion we need to retrieve the release manager’s public key from a key server. One such server is pgp.uni-mainz.de.
The public key servers are linked together, so you should be able to connect to any key server.

$ curl --silent https://sebastian-bergmann.de/gpg.asc | gpg --import
gpg: key 4AA394086372C20A: 452 signatures not checked due to missing keys
gpg: /root/.gnupg/trustdb.gpg: trustdb created
gpg: key 4AA394086372C20A: public key "Sebastian Bergmann <sb@sebastian-bergmann.de>"
→˓imported
gpg: Total number processed: 1
gpg: imported: 1
gpg: no ultimately trusted keys found

Now we have received a public key for an entity known as “Sebastian Bergmann <sb@sebastian-bergmann.de>”.
However, we have no way of verifying this key was created by the person known as Sebastian Bergmann. But, let’s
try to verify the release signature again.

$ gpg phpunit-latest.phar.asc
gpg: Signature made Sat 19 Jul 2014 01:28:02 PM CEST using RSA key ID 6372C20A
gpg: Good signature from "Sebastian Bergmann <sb@sebastian-bergmann.de>"
gpg: aka "Sebastian Bergmann <sebastian@php.net>"
gpg: aka "Sebastian Bergmann <sebastian@thephp.cc>"
gpg: aka "Sebastian Bergmann <sebastian@phpunit.de>"
gpg: aka "Sebastian Bergmann <sebastian.bergmann@thephp.cc>"
gpg: aka "[jpeg image of size 40635]"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: D840 6D0D 8294 7747 2937 7831 4AA3 9408 6372 C20A

At this point, the signature is good, but we don’t trust this key. A good signature means that the file has not been
tampered. However, due to the nature of public key cryptography, you need to additionally verify that key 6372C20A
was created by the real Sebastian Bergmann.

Any attacker can create a public key and upload it to the public key servers. They can then create a malicious release
signed by this fake key. Then, if you tried to verify the signature of this corrupt release, it would succeed because the
key was not the “real” key. Therefore, you need to validate the authenticity of this key. Validating the authenticity of
a public key, however, is outside the scope of this documentation.

4 Chapter 1. Installing PHPUnit

https://phar.phpunit.de/
https://phar.phpunit.de/phpunit
https://phar.phpunit.de/phpunit
mailto:sb@sebastian-bergmann.de
mailto:sb@sebastian-bergmann.de
mailto:sebastian@php.net
mailto:sebastian@thephp.cc
mailto:sebastian@phpunit.de
mailto:sebastian.bergmann@thephp.cc

PHPUnit Manual, Release latest

Manually verifying the authenticity and integrity of a PHPUnit PHAR using GPG is tedious. This is why PHIVE, the
PHAR Installation and Verification Environment, was created. You can learn about PHIVE on its website

1.3 Composer

Simply add a (development-time) dependency on phpunit/phpunit to your project’s composer.json file if
you use Composer to manage the dependencies of your project:

composer require --dev phpunit/phpunit ^latest

1.4 Global Installation

Please note that it is not recommended to install PHPUnit globally, as /usr/bin/phpunit or /usr/local/
bin/phpunit, for instance.

Instead, PHPUnit should be managed as a project-local dependency.

Either put the PHAR of the specific PHPUnit version you need in your project’s tools directory (which should be
managed by PHIVE) or depend on the specific PHPUnit version you need in your project’s composer.json if you
use Composer.

1.3. Composer 5

https://phar.io/
https://getcomposer.org/

PHPUnit Manual, Release latest

6 Chapter 1. Installing PHPUnit

CHAPTER 2

Writing Tests for PHPUnit

Example 2.1 shows how we can write tests using PHPUnit that exercise PHP’s array operations. The example intro-
duces the basic conventions and steps for writing tests with PHPUnit:

1. The tests for a class Class go into a class ClassTest.

2. ClassTest inherits (most of the time) from PHPUnit\Framework\TestCase.

3. The tests are public methods that are named test*.

Alternatively, you can use the @test annotation in a method’s docblock to mark it as a test method.

4. Inside the test methods, assertion methods such as assertSame() (see Assertions) are used to assert that an
actual value matches an expected value.

Example 2.1: Testing array operations with PHPUnit

<?php
use PHPUnit\Framework\TestCase;

class StackTest extends TestCase
{

public function testPushAndPop()
{

$stack = [];
$this->assertSame(0, count($stack));

array_push($stack, 'foo');
$this->assertSame('foo', $stack[count($stack)-1]);
$this->assertSame(1, count($stack));

$this->assertSame('foo', array_pop($stack));
$this->assertSame(0, count($stack));

}
}

7

PHPUnit Manual, Release latest

Martin Fowler:

Whenever you are tempted to type something into a print statement or a debugger expression, write it
as a test instead.

2.1 Test Dependencies

Adrian Kuhn et. al.:

Unit Tests are primarily written as a good practice to help developers identify and fix bugs, to refactor
code and to serve as documentation for a unit of software under test. To achieve these benefits, unit tests
ideally should cover all the possible paths in a program. One unit test usually covers one specific path in
one function or method. However a test method is not necessarily an encapsulated, independent entity.
Often there are implicit dependencies between test methods, hidden in the implementation scenario of a
test.

PHPUnit supports the declaration of explicit dependencies between test methods. Such dependencies do not define
the order in which the test methods are to be executed but they allow the returning of an instance of the test fixture by
a producer and passing it to the dependent consumers.

• A producer is a test method that yields its unit under test as return value.

• A consumer is a test method that depends on one or more producers and their return values.

Example 2.2 shows how to use the @depends annotation to express dependencies between test methods.

Example 2.2: Using the @depends annotation to express dependencies

<?php
use PHPUnit\Framework\TestCase;

class StackTest extends TestCase
{

public function testEmpty()
{

$stack = [];
$this->assertEmpty($stack);

return $stack;
}

/**
* @depends testEmpty

*/
public function testPush(array $stack)
{

array_push($stack, 'foo');
$this->assertSame('foo', $stack[count($stack)-1]);
$this->assertNotEmpty($stack);

return $stack;
}

/**
* @depends testPush

*/
public function testPop(array $stack)

8 Chapter 2. Writing Tests for PHPUnit

PHPUnit Manual, Release latest

{
$this->assertSame('foo', array_pop($stack));
$this->assertEmpty($stack);

}
}

In the example above, the first test, testEmpty(), creates a new array and asserts that it is empty. The test then
returns the fixture as its result. The second test, testPush(), depends on testEmpty() and is passed the result
of that depended-upon test as its argument. Finally, testPop() depends upon testPush().

Note

The return value yielded by a producer is passed “as-is” to its consumers by default. This means that when a producer
returns an object, a reference to that object is passed to the consumers. Instead of a reference either (a) a (deep)
copy via @depends clone, or (b) a (normal shallow) clone (based on PHP keyword clone) via @depends
shallowClone are possible too.

To quickly localize defects, we want our attention to be focussed on relevant failing tests. This is why PHPUnit skips
the execution of a test when a depended-upon test has failed. This improves defect localization by exploiting the
dependencies between tests as shown in Example 2.3.

Example 2.3: Exploiting the dependencies between tests

<?php
use PHPUnit\Framework\TestCase;

class DependencyFailureTest extends TestCase
{

public function testOne()
{

$this->assertTrue(false);
}

/**
* @depends testOne

*/
public function testTwo()
{
}

}

$ phpunit --verbose DependencyFailureTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

FS

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) DependencyFailureTest::testOne
Failed asserting that false is true.

/home/sb/DependencyFailureTest.php:6

2.1. Test Dependencies 9

PHPUnit Manual, Release latest

There was 1 skipped test:

1) DependencyFailureTest::testTwo
This test depends on "DependencyFailureTest::testOne" to pass.

FAILURES!
Tests: 1, Assertions: 1, Failures: 1, Skipped: 1.

A test may have more than one @depends annotation. PHPUnit does not change the order in which tests are executed,
you have to ensure that the dependencies of a test can actually be met before the test is run.

A test that has more than one @depends annotation will get a fixture from the first producer as the first argument, a
fixture from the second producer as the second argument, and so on. See Example 2.4

Example 2.4: Test with multiple dependencies

<?php
use PHPUnit\Framework\TestCase;

class MultipleDependenciesTest extends TestCase
{

public function testProducerFirst()
{

$this->assertTrue(true);
return 'first';

}

public function testProducerSecond()
{

$this->assertTrue(true);
return 'second';

}

/**
* @depends testProducerFirst

* @depends testProducerSecond

*/
public function testConsumer($a, $b)
{

$this->assertSame('first', $a);
$this->assertSame('second', $b);

}
}

$ phpunit --verbose MultipleDependenciesTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

...

Time: 0 seconds, Memory: 3.25Mb

OK (3 tests, 4 assertions)

10 Chapter 2. Writing Tests for PHPUnit

PHPUnit Manual, Release latest

2.2 Data Providers

A test method can accept arbitrary arguments. These arguments are to be provided by one or more data provider
methods (additionProvider() in Example 2.5). The data provider method to be used is specified using the
@dataProvider annotation.

A data provider method must be public and either return an array of arrays or an object that implements the
Iterator interface and yields an array for each iteration step. For each array that is part of the collection the
test method will be called with the contents of the array as its arguments.

Example 2.5: Using a data provider that returns an array of arrays

<?php
use PHPUnit\Framework\TestCase;

class DataTest extends TestCase
{

/**
* @dataProvider additionProvider

*/
public function testAdd($a, $b, $expected)
{

$this->assertSame($expected, $a + $b);
}

public function additionProvider()
{

return [
[0, 0, 0],
[0, 1, 1],
[1, 0, 1],
[1, 1, 3]

];
}

}

$ phpunit DataTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

...F

Time: 0 seconds, Memory: 5.75Mb

There was 1 failure:

1) DataTest::testAdd with data set #3 (1, 1, 3)
Failed asserting that 2 is identical to 3.

/home/sb/DataTest.php:9

FAILURES!
Tests: 4, Assertions: 4, Failures: 1.

When using a large number of datasets it’s useful to name each one with string key instead of default numeric. Output
will be more verbose as it’ll contain that name of a dataset that breaks a test.

2.2. Data Providers 11

PHPUnit Manual, Release latest

Example 2.6: Using a data provider with named datasets

<?php
use PHPUnit\Framework\TestCase;

class DataTest extends TestCase
{

/**
* @dataProvider additionProvider

*/
public function testAdd($a, $b, $expected)
{

$this->assertSame($expected, $a + $b);
}

public function additionProvider()
{

return [
'adding zeros' => [0, 0, 0],
'zero plus one' => [0, 1, 1],
'one plus zero' => [1, 0, 1],
'one plus one' => [1, 1, 3]

];
}

}

$ phpunit DataTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

...F

Time: 0 seconds, Memory: 5.75Mb

There was 1 failure:

1) DataTest::testAdd with data set "one plus one" (1, 1, 3)
Failed asserting that 2 is identical to 3.

/home/sb/DataTest.php:9

FAILURES!
Tests: 4, Assertions: 4, Failures: 1.

Example 2.7: Using a data provider that returns an Iterator object

<?php
use PHPUnit\Framework\TestCase;

require 'CsvFileIterator.php';

class DataTest extends TestCase
{

/**
* @dataProvider additionProvider

*/
public function testAdd($a, $b, $expected)
{

12 Chapter 2. Writing Tests for PHPUnit

PHPUnit Manual, Release latest

$this->assertSame($expected, $a + $b);
}

public function additionProvider()
{

return new CsvFileIterator('data.csv');
}

}

$ phpunit DataTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

...F

Time: 0 seconds, Memory: 5.75Mb

There was 1 failure:

1) DataTest::testAdd with data set #3 ('1', '1', '3')
Failed asserting that 2 is identical to 3.

/home/sb/DataTest.php:11

FAILURES!
Tests: 4, Assertions: 4, Failures: 1.

Example 2.8: The CsvFileIterator class

<?php
use PHPUnit\Framework\TestCase;

class CsvFileIterator implements Iterator
{

protected $file;
protected $key = 0;
protected $current;

public function __construct($file)
{

$this->file = fopen($file, 'r');
}

public function __destruct()
{

fclose($this->file);
}

public function rewind()
{

rewind($this->file);
$this->current = fgetcsv($this->file);
$this->key = 0;

}

public function valid()
{

return !feof($this->file);

2.2. Data Providers 13

PHPUnit Manual, Release latest

}

public function key()
{

return $this->key;
}

public function current()
{

return $this->current;
}

public function next()
{

$this->current = fgetcsv($this->file);
$this->key++;

}
}

When a test receives input from both a @dataProvider method and from one or more tests it @depends on,
the arguments from the data provider will come before the ones from depended-upon tests. The arguments from
depended-upon tests will be the same for each data set. See Example 2.9

Example 2.9: Combination of @depends and @dataProvider in same test

<?php
use PHPUnit\Framework\TestCase;

class DependencyAndDataProviderComboTest extends TestCase
{

public function provider()
{

return [['provider1'], ['provider2']];
}

public function testProducerFirst()
{

$this->assertTrue(true);
return 'first';

}

public function testProducerSecond()
{

$this->assertTrue(true);
return 'second';

}

/**
* @depends testProducerFirst

* @depends testProducerSecond

* @dataProvider provider

*/
public function testConsumer()
{

$this->assertSame(
['provider1', 'first', 'second'],
func_get_args()

);

14 Chapter 2. Writing Tests for PHPUnit

PHPUnit Manual, Release latest

}
}

$ phpunit --verbose DependencyAndDataProviderComboTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

...F

Time: 0 seconds, Memory: 3.50Mb

There was 1 failure:

1) DependencyAndDataProviderComboTest::testConsumer with data set #1
→˓('provider2')
Failed asserting that two arrays are identical.
--- Expected
+++ Actual
@@ @@
Array &0 (
- 0 => 'provider1'
+ 0 => 'provider2'

1 => 'first'
2 => 'second'

)
/home/sb/DependencyAndDataProviderComboTest.php:32

FAILURES!
Tests: 4, Assertions: 4, Failures: 1.

Example 2.10: Using multiple data providers for a single test

<?php
use PHPUnit\Framework\TestCase;

class DataTest extends TestCase
{

/**
* @dataProvider additionWithNonNegativeNumbersProvider

* @dataProvider additionWithNegativeNumbersProvider

*/
public function testAdd($a, $b, $expected)
{

$this->assertSame($expected, $a + $b);
}

public function additionWithNonNegativeNumbersProvider()
{

return [
[0, 1, 1],
[1, 0, 1],
[1, 1, 3]

];
}

public function additionWithNegativeNumbersProvider()
{

2.2. Data Providers 15

PHPUnit Manual, Release latest

return [
[-1, 1, 0],
[-1, -1, -2],
[1, -1, 0]

];
}

}

$ phpunit DataTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

..F... 6 / 6 (100
→˓%)

Time: 0 seconds, Memory: 5.75Mb

There was 1 failure:

1) DataTest::testAdd with data set #3 (1, 1, 3)
Failed asserting that 2 is identical to 3.

/home/sb/DataTest.php:12

FAILURES!
Tests: 6, Assertions: 6, Failures: 1.

Note

When a test depends on a test that uses data providers, the depending test will be executed when the test it depends
upon is successful for at least one data set. The result of a test that uses data providers cannot be injected into a
depending test.

Note

All data providers are executed before both the call to the setUpBeforeClass() static method and the first call
to the setUp() method. Because of that you can’t access any variables you create there from within a data provider.
This is required in order for PHPUnit to be able to compute the total number of tests.

2.3 Testing Exceptions

Example 2.11 shows how to use the expectException() method to test whether an exception is thrown by the
code under test.

Example 2.11: Using the expectException() method

<?php
use PHPUnit\Framework\TestCase;

class ExceptionTest extends TestCase
{

public function testException()

16 Chapter 2. Writing Tests for PHPUnit

PHPUnit Manual, Release latest

{
$this->expectException(InvalidArgumentException::class);

}
}

$ phpunit ExceptionTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) ExceptionTest::testException
Failed asserting that exception of type "InvalidArgumentException" is thrown.

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

In addition to the expectException() method the expectExceptionCode(),
expectExceptionMessage(), and expectExceptionMessageRegExp() methods exist to set up
expectations for exceptions raised by the code under test.

Note

Note that expectExceptionMessage() asserts that the $actual message contains the $expected message
and does not perform an exact string comparison.

2.4 Testing PHP Errors, Warnings, and Notices

By default, PHPUnit converts PHP errors, warnings, and notices that are triggered during the execution of a test to an
exception. Among other benefits, this makes it possible to expect that a PHP error, warning, or notice is triggered in a
test as shown in Example 2.12.

Note

PHP’s error_reporting runtime configuration can limit which errors PHPUnit will convert to exceptions. If you
are having issues with this feature, be sure PHP is not configured to suppress the type of error you are interested in.

Example 2.12: Expecting PHP errors, warnings, and notices

<?php declare(strict_types=1);
use PHPUnit\Framework\TestCase;

final class ErrorTest extends TestCase
{

public function testDeprecationCanBeExpected(): void
{

$this->expectDeprecation();

// Optionally test that the message is equal to a string

2.4. Testing PHP Errors, Warnings, and Notices 17

PHPUnit Manual, Release latest

$this->expectDeprecationMessage('foo');

// Or optionally test that the message matches a regular expression
$this->expectDeprecationMessageMatches('/foo/');

\trigger_error('foo', \E_USER_DEPRECATED);
}

public function testNoticeCanBeExpected(): void
{

$this->expectNotice();

// Optionally test that the message is equal to a string
$this->expectNoticeMessage('foo');

// Or optionally test that the message matches a regular expression
$this->expectNoticeMessageMatches('/foo/');

\trigger_error('foo', \E_USER_NOTICE);
}

public function testWarningCanBeExpected(): void
{

$this->expectWarning();

// Optionally test that the message is equal to a string
$this->expectWarningMessage('foo');

// Or optionally test that the message matches a regular expression
$this->expectWarningMessageMatches('/foo/');

\trigger_error('foo', \E_USER_WARNING);
}

public function testErrorCanBeExpected(): void
{

$this->expectError();

// Optionally test that the message is equal to a string
$this->expectErrorMessage('foo');

// Or optionally test that the message matches a regular expression
$this->expectErrorMessageMatches('/foo/');

\trigger_error('foo', \E_USER_ERROR);
}

}

When testing code that uses PHP built-in functions such as fopen() that may trigger errors it can sometimes be
useful to use error suppression while testing. This allows you to check the return values by suppressing notices that
would lead to an exception raised by PHPUnit’s error handler.

Example 2.13: Testing return values of code that uses PHP Errors

<?php
use PHPUnit\Framework\TestCase;

class ErrorSuppressionTest extends TestCase

18 Chapter 2. Writing Tests for PHPUnit

PHPUnit Manual, Release latest

{
public function testFileWriting()
{

$writer = new FileWriter;

$this->assertFalse(@$writer->write('/is-not-writeable/file', 'stuff'));
}

}

class FileWriter
{

public function write($file, $content)
{

$file = fopen($file, 'w');

if ($file == false) {
return false;

}

// ...
}

}

$ phpunit ErrorSuppressionTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

.

Time: 1 seconds, Memory: 5.25Mb

OK (1 test, 1 assertion)

Without the error suppression the test would fail reporting fopen(/is-not-writeable/file): failed
to open stream: No such file or directory.

2.5 Testing Output

Sometimes you want to assert that the execution of a method, for instance, generates an expected output (via echo
or print, for example). The PHPUnit\Framework\TestCase class uses PHP’s Output Buffering feature to
provide the functionality that is necessary for this.

Example 2.14 shows how to use the expectOutputString() method to set the expected output. If this expected
output is not generated, the test will be counted as a failure.

Example 2.14: Testing the output of a function or method

<?php
use PHPUnit\Framework\TestCase;

class OutputTest extends TestCase
{

public function testExpectFooActualFoo()
{

$this->expectOutputString('foo');
print 'foo';

}

2.5. Testing Output 19

http://www.php.net/manual/en/ref.outcontrol.php

PHPUnit Manual, Release latest

public function testExpectBarActualBaz()
{

$this->expectOutputString('bar');
print 'baz';

}
}

$ phpunit OutputTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

.F

Time: 0 seconds, Memory: 5.75Mb

There was 1 failure:

1) OutputTest::testExpectBarActualBaz
Failed asserting that two strings are equal.
--- Expected
+++ Actual
@@ @@
-'bar'
+'baz'

FAILURES!
Tests: 2, Assertions: 2, Failures: 1.

Table 2.1 shows the methods provided for testing output

Table 2.1: Methods for testing output
Method Meaning
void expectOutputRegex(string
$regularExpression)

Set up the expectation that the output matches a
$regularExpression.

void expectOutputString(string
$expectedString)

Set up the expectation that the output is equal to an
$expectedString.

bool setOutputCallback(callable
$callback)

Sets up a callback that is used to, for instance, normalize
the actual output.

string getActualOutput() Get the actual output.

Note

A test that emits output will fail in strict mode.

2.6 Error output

Whenever a test fails PHPUnit tries its best to provide you with as much context as possible that can help to identify
the problem.

20 Chapter 2. Writing Tests for PHPUnit

PHPUnit Manual, Release latest

Example 2.15: Error output generated when an array comparison fails

<?php
use PHPUnit\Framework\TestCase;

class ArrayDiffTest extends TestCase
{

public function testEquality()
{

$this->assertSame(
[1, 2, 3, 4, 5, 6],
[1, 2, 33, 4, 5, 6]

);
}

}

$ phpunit ArrayDiffTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

1) ArrayDiffTest::testEquality
Failed asserting that two arrays are identical.
--- Expected
+++ Actual
@@ @@
Array (

0 => 1
1 => 2

- 2 => 3
+ 2 => 33

3 => 4
4 => 5
5 => 6

)

/home/sb/ArrayDiffTest.php:7

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

In this example only one of the array values differs and the other values are shown to provide context on where the
error occurred.

When the generated output would be long to read PHPUnit will split it up and provide a few lines of context around
every difference.

Example 2.16: Error output when an array comparison of an long array fails

<?php
use PHPUnit\Framework\TestCase;

2.6. Error output 21

PHPUnit Manual, Release latest

class LongArrayDiffTest extends TestCase
{

public function testEquality()
{

$this->assertSame(
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 33, 4, 5, 6]

);
}

}

$ phpunit LongArrayDiffTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

1) LongArrayDiffTest::testEquality
Failed asserting that two arrays are identical.
--- Expected
+++ Actual
@@ @@

11 => 0
12 => 1
13 => 2

- 14 => 3
+ 14 => 33

15 => 4
16 => 5
17 => 6

)

/home/sb/LongArrayDiffTest.php:7

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

2.6.1 Edge cases

When a comparison fails PHPUnit creates textual representations of the input values and compares those. Due to that
implementation a diff might show more problems than actually exist.

This only happens when using assertEquals() or other ‘weak’ comparison functions on arrays or objects.

Example 2.17: Edge case in the diff generation when using weak comparison

<?php
use PHPUnit\Framework\TestCase;

class ArrayWeakComparisonTest extends TestCase
{

public function testEquality()

22 Chapter 2. Writing Tests for PHPUnit

PHPUnit Manual, Release latest

{
$this->assertEquals(

[1, 2, 3, 4, 5, 6],
['1', 2, 33, 4, 5, 6]

);
}

}

$ phpunit ArrayWeakComparisonTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

1) ArrayWeakComparisonTest::testEquality
Failed asserting that two arrays are equal.
--- Expected
+++ Actual
@@ @@
Array (

- 0 => 1
+ 0 => '1'

1 => 2
- 2 => 3
+ 2 => 33

3 => 4
4 => 5
5 => 6

)

/home/sb/ArrayWeakComparisonTest.php:7

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

In this example the difference in the first index between 1 and '1' is reported even though assertEquals()
considers the values as a match.

2.6. Error output 23

PHPUnit Manual, Release latest

24 Chapter 2. Writing Tests for PHPUnit

CHAPTER 3

The Command-Line Test Runner

The PHPUnit command-line test runner can be invoked through the phpunit command. The following code shows
how to run tests with the PHPUnit command-line test runner:

$ phpunit ArrayTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

..

Time: 0 seconds

OK (2 tests, 2 assertions)

When invoked as shown above, the PHPUnit command-line test runner will look for a ArrayTest.php sourcefile
in the current working directory, load it, and expect to find a ArrayTest test case class. It will then execute the tests
of that class.

For each test run, the PHPUnit command-line tool prints one character to indicate progress:

.

Printed when the test succeeds.

F

Printed when an assertion fails while running the test method.

E

Printed when an error occurs while running the test method.

R

Printed when the test has been marked as risky (see Risky Tests).

S

Printed when the test has been skipped (see Incomplete and Skipped Tests).

I

25

PHPUnit Manual, Release latest

Printed when the test is marked as being incomplete or not yet implemented (see Incomplete and Skipped
Tests).

PHPUnit distinguishes between failures and errors. A failure is a violated PHPUnit assertion such as a failing
assertSame() call. An error is an unexpected exception or a PHP error. Sometimes this distinction proves useful
since errors tend to be easier to fix than failures. If you have a big list of problems, it is best to tackle the errors first
and see if you have any failures left when they are all fixed.

3.1 Command-Line Options

Let’s take a look at the command-line test runner’s options in the following code:

$ phpunit --help
PHPUnit latest.0 by Sebastian Bergmann and contributors.

Usage: phpunit [options] UnitTest [UnitTest.php]
phpunit [options] <directory>

Code Coverage Options:

--coverage-clover <file> Generate code coverage report in Clover XML
→˓format
--coverage-crap4j <file> Generate code coverage report in Crap4J XML

→˓format
--coverage-html <dir> Generate code coverage report in HTML format
--coverage-php <file> Export PHP_CodeCoverage object to file
--coverage-text=<file> Generate code coverage report in text format

Default: Standard output
--coverage-xml <dir> Generate code coverage report in PHPUnit XML

→˓format
--whitelist <dir> Whitelist <dir> for code coverage analysis
--disable-coverage-ignore Disable annotations for ignoring code coverage
--no-coverage Ignore code coverage configuration
--dump-xdebug-filter <file> Generate script to set Xdebug code coverage

→˓filter

Logging Options:

--log-junit <file> Log test execution in JUnit XML format to file
--log-teamcity <file> Log test execution in TeamCity format to file
--testdox-html <file> Write agile documentation in HTML format to file
--testdox-text <file> Write agile documentation in Text format to file
--testdox-xml <file> Write agile documentation in XML format to file
--reverse-list Print defects in reverse order

Test Selection Options:

--filter <pattern> Filter which tests to run
--testsuite <name,...> Filter which testsuite to run
--group ... Only runs tests from the specified group(s)
--exclude-group ... Exclude tests from the specified group(s)
--list-groups List available test groups
--list-suites List available test suites

26 Chapter 3. The Command-Line Test Runner

PHPUnit Manual, Release latest

--list-tests List available tests
--list-tests-xml <file> List available tests in XML format
--test-suffix ... Only search for test in files with specified

suffix(es). Default: Test.php,.phpt

Test Execution Options:

--dont-report-useless-tests Do not report tests that do not test anything
--strict-coverage Be strict about @covers annotation usage
--strict-global-state Be strict about changes to global state
--disallow-test-output Be strict about output during tests
--disallow-resource-usage Be strict about resource usage during small

→˓tests
--enforce-time-limit Enforce time limit based on test size
--default-time-limit=<sec> Timeout in seconds for tests without @small,

→˓@medium or @large
--disallow-todo-tests Disallow @todo-annotated tests

--process-isolation Run each test in a separate PHP process
--globals-backup Backup and restore $GLOBALS for each test
--static-backup Backup and restore static attributes for each

→˓test

--colors=<flag> Use colors in output ("never", "auto" or
→˓"always")
--columns <n> Number of columns to use for progress output
--columns max Use maximum number of columns for progress

→˓output
--stderr Write to STDERR instead of STDOUT
--stop-on-defect Stop execution upon first not-passed test
--stop-on-error Stop execution upon first error
--stop-on-failure Stop execution upon first error or failure
--stop-on-warning Stop execution upon first warning
--stop-on-risky Stop execution upon first risky test
--stop-on-skipped Stop execution upon first skipped test
--stop-on-incomplete Stop execution upon first incomplete test
--fail-on-warning Treat tests with warnings as failures
--fail-on-risky Treat risky tests as failures
-v|--verbose Output more verbose information
--debug Display debugging information

--loader <loader> TestSuiteLoader implementation to use
--repeat <times> Runs the test(s) repeatedly
--teamcity Report test execution progress in TeamCity

→˓format
--testdox Report test execution progress in TestDox format
--testdox-group Only include tests from the specified group(s)
--testdox-exclude-group Exclude tests from the specified group(s)
--printer <printer> TestListener implementation to use

--resolve-dependencies Resolve dependencies between tests
--order-by=<order> Run tests in order: default|defects|duration|no-

→˓depends|random|reverse
--random-order-seed=<N> Use a specific random seed <N> for random order

3.1. Command-Line Options 27

PHPUnit Manual, Release latest

--cache-result Write run result to cache to enable ordering
→˓tests defects-first

Configuration Options:

--prepend <file> A PHP script that is included as early as
→˓possible
--bootstrap <file> A PHP script that is included before the tests

→˓run
-c|--configuration <file> Read configuration from XML file
--no-configuration Ignore default configuration file (phpunit.xml)
--no-logging Ignore logging configuration
--no-extensions Do not load PHPUnit extensions
--include-path <path(s)> Prepend PHP's include_path with given path(s)
-d key[=value] Sets a php.ini value
--generate-configuration Generate configuration file with suggested

→˓settings
--cache-result-file=<FILE> Specify result cache path and filename

Miscellaneous Options:

-h|--help Prints this usage information
--version Prints the version and exits
--atleast-version <min> Checks that version is greater than min and

→˓exits
--check-version Check whether PHPUnit is the latest version

phpunit UnitTest

Runs the tests that are provided by the class UnitTest. This class is expected to be declared in the
UnitTest.php sourcefile.

UnitTest must be either a class that inherits from PHPUnit\Framework\TestCase or a class
that provides a public static suite() method which returns a PHPUnit\Framework\Test
object, for example an instance of the PHPUnit\Framework\TestSuite class.

phpunit UnitTest UnitTest.php

Runs the tests that are provided by the class UnitTest. This class is expected to be declared in the
specified sourcefile.

--coverage-clover

Generates a logfile in XML format with the code coverage information for the tests run. See Logging for
more details.

Please note that this functionality is only available when the tokenizer and Xdebug extensions are installed.

--coverage-crap4j

Generates a code coverage report in Crap4j format. See Code Coverage Analysis for more details.

Please note that this functionality is only available when the tokenizer and Xdebug extensions are installed.

--coverage-html

Generates a code coverage report in HTML format. See Code Coverage Analysis for more details.

Please note that this functionality is only available when the tokenizer and Xdebug extensions are installed.

--coverage-php

28 Chapter 3. The Command-Line Test Runner

PHPUnit Manual, Release latest

Generates a serialized PHP_CodeCoverage object with the code coverage information.

Please note that this functionality is only available when the tokenizer and Xdebug extensions are installed.

--coverage-text

Generates a logfile or command-line output in human readable format with the code coverage information
for the tests run. See Logging for more details.

Please note that this functionality is only available when the tokenizer and Xdebug extensions are installed.

--log-junit

Generates a logfile in JUnit XML format for the tests run. See Logging for more details.

--testdox-html and --testdox-text

Generates agile documentation in HTML or plain text format for the tests that are run (see TestDox).

--filter

Only runs tests whose name matches the given regular expression pattern. If the pattern is not enclosed in
delimiters, PHPUnit will enclose the pattern in / delimiters.

The test names to match will be in one of the following formats:

TestNamespace\TestCaseClass::testMethod

The default test name format is the equivalent of using the __METHOD__ magic constant
inside the test method.

TestNamespace\TestCaseClass::testMethod with data set #0

When a test has a data provider, each iteration of the data gets the current index appended to
the end of the default test name.

TestNamespace\TestCaseClass::testMethod with data set "my named data"

When a test has a data provider that uses named sets, each iteration of the data gets the current
name appended to the end of the default test name. See Example 3.1 for an example of named
data sets.

Example 3.1: Named data sets

<?php
use PHPUnit\Framework\TestCase;

namespace TestNamespace;

class TestCaseClass extends TestCase
{

/**
* @dataProvider provider

*/
public function testMethod($data)
{

$this->assertTrue($data);
}

public function provider()
{

return [
'my named data' => [true],
'my data' => [true]

3.1. Command-Line Options 29

PHPUnit Manual, Release latest

];
}

}

/path/to/my/test.phpt

The test name for a PHPT test is the filesystem path.

See Example 3.2 for examples of valid filter patterns.

Example 3.2: Filter pattern examples

--filter 'TestNamespace\\TestCaseClass::testMethod'
--filter 'TestNamespace\\TestCaseClass'
--filter TestNamespace
--filter TestCaseClase
--filter testMethod
--filter '/::testMethod .*"my named data"/'
--filter '/::testMethod .*#5$/'
--filter '/::testMethod .*#(5|6|7)$/'

See Example 3.3 for some additional shortcuts that are available for matching data providers.

Example 3.3: Filter shortcuts

--filter 'testMethod#2'
--filter 'testMethod#2-4'
--filter '#2'
--filter '#2-4'
--filter 'testMethod@my named data'
--filter 'testMethod@my.*data'
--filter '@my named data'
--filter '@my.*data'

--testsuite

Only runs the test suite whose name matches the given pattern.

--group

Only runs tests from the specified group(s). A test can be tagged as belonging to a group using the
@group annotation.

The @author and @ticket annotations are aliases for @group allowing to filter tests based on their
authors or their ticket identifiers, respectively.

--exclude-group

Exclude tests from the specified group(s). A test can be tagged as belonging to a group using the @group
annotation.

--list-groups

List available test groups.

--test-suffix

Only search for test files with specified suffix(es).

--dont-report-useless-tests

Do not report tests that do not test anything. See Risky Tests for details.

30 Chapter 3. The Command-Line Test Runner

PHPUnit Manual, Release latest

--strict-coverage

Be strict about unintentionally covered code. See Risky Tests for details.

--strict-global-state

Be strict about global state manipulation. See Risky Tests for details.

--disallow-test-output

Be strict about output during tests. See Risky Tests for details.

--disallow-todo-tests

Does not execute tests which have the @todo annotation in its docblock.

--enforce-time-limit

Enforce time limit based on test size. See Risky Tests for details.

--process-isolation

Run each test in a separate PHP process.

--no-globals-backup

Do not backup and restore $GLOBALS. See Global State for more details.

--static-backup

Backup and restore static attributes of user-defined classes. See Global State for more details.

--colors

Use colors in output. On Windows, use ANSICON or ConEmu.

There are three possible values for this option:

• never: never displays colors in the output. This is the default value when --colors option is not
used.

• auto: displays colors in the output unless the current terminal doesn’t supports colors, or if the
output is piped to a command or redirected to a file.

• always: always displays colors in the output even when the current terminal doesn’t supports
colors, or when the output is piped to a command or redirected to a file.

When --colors is used without any value, auto is the chosen value.

--columns

Defines the number of columns to use for progress output. If max is defined as value, the number of
columns will be maximum of the current terminal.

--stderr

Optionally print to STDERR instead of STDOUT.

--stop-on-error

Stop execution upon first error.

--stop-on-failure

Stop execution upon first error or failure.

--stop-on-risky

Stop execution upon first risky test.

3.1. Command-Line Options 31

https://github.com/adoxa/ansicon
https://github.com/Maximus5/ConEmu

PHPUnit Manual, Release latest

--stop-on-skipped

Stop execution upon first skipped test.

--stop-on-incomplete

Stop execution upon first incomplete test.

--verbose

Output more verbose information, for instance the names of tests that were incomplete or have been
skipped.

--debug

Output debug information such as the name of a test when its execution starts.

--loader

Specifies the PHPUnit\Runner\TestSuiteLoader implementation to use.

The standard test suite loader will look for the sourcefile in the current working directory and in each
directory that is specified in PHP’s include_path configuration directive. A class name such as
Project_Package_Class is mapped to the source filename Project/Package/Class.php.

--repeat

Repeatedly runs the test(s) the specified number of times.

--testdox

Reports the test progress in TestDox format (see TestDox).

--printer

Specifies the result printer to use. The printer class must extend PHPUnit\Util\Printer and imple-
ment the PHPUnit\Framework\TestListener interface.

--bootstrap

A “bootstrap” PHP file that is run before the tests.

--configuration, -c

Read configuration from XML file. See The XML Configuration File for more details.

If phpunit.xml or phpunit.xml.dist (in that order) exist in the current working directory and
--configuration is not used, the configuration will be automatically read from that file.

If a directory is specified and if phpunit.xml or phpunit.xml.dist (in that order) exists in this
directory, the configuration will be automatically read from that file.

--no-configuration

Ignore phpunit.xml and phpunit.xml.dist from the current working directory.

--include-path

Prepend PHP’s include_path with given path(s).

-d

Sets the value of the given PHP configuration option.

Note

Please note that as of 4.8, options can be put after the argument(s).

32 Chapter 3. The Command-Line Test Runner

PHPUnit Manual, Release latest

3.2 TestDox

PHPUnit’s TestDox functionality looks at a test class and all the test method names and converts them
from camel case (or snake_case) PHP names to sentences: testBalanceIsInitiallyZero() (or
test_balance_is_initially_zero() becomes “Balance is initially zero”. If there are several test methods
whose names only differ in a suffix of one or more digits, such as testBalanceCannotBecomeNegative()
and testBalanceCannotBecomeNegative2(), the sentence “Balance cannot become negative” will appear
only once, assuming that all of these tests succeed.

Let us take a look at the agile documentation generated for a BankAccount class:

$ phpunit --testdox BankAccountTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

BankAccount
Balance is initially zero
Balance cannot become negative

Alternatively, the agile documentation can be generated in HTML or plain text format and written to a file using the
--testdox-html and --testdox-text arguments.

Agile Documentation can be used to document the assumptions you make about the external packages that you use
in your project. When you use an external package, you are exposed to the risks that the package will not behave as
you expect, and that future versions of the package will change in subtle ways that will break your code, without you
knowing it. You can address these risks by writing a test every time you make an assumption. If your test succeeds,
your assumption is valid. If you document all your assumptions with tests, future releases of the external package will
be no cause for concern: if the tests succeed, your system should continue working.

3.2. TestDox 33

PHPUnit Manual, Release latest

34 Chapter 3. The Command-Line Test Runner

CHAPTER 4

Fixtures

One of the most time-consuming parts of writing tests is writing the code to set the world up in a known state and then
return it to its original state when the test is complete. This known state is called the fixture of the test.

In Testing array operations with PHPUnit, the fixture was simply the array that is stored in the $stack variable.
Most of the time, though, the fixture will be more complex than a simple array, and the amount of code needed to set
it up will grow accordingly. The actual content of the test gets lost in the noise of setting up the fixture. This problem
gets even worse when you write several tests with similar fixtures. Without some help from the testing framework, we
would have to duplicate the code that sets up the fixture for each test we write.

PHPUnit supports sharing the setup code. Before a test method is run, a template method called setUp() is invoked.
setUp() is where you create the objects against which you will test. Once the test method has finished running,
whether it succeeded or failed, another template method called tearDown() is invoked. tearDown() is where
you clean up the objects against which you tested.

In Using the @depends annotation to express dependencies we used the producer-consumer relationship between tests
to share a fixture. This is not always desired or even possible. Example 4.1 shows how we can write the tests of
the StackTest in such a way that not the fixture itself is reused but the code that creates it. First we declare the
instance variable, $stack, that we are going to use instead of a method-local variable. Then we put the creation
of the array fixture into the setUp() method. Finally, we remove the redundant code from the test methods and
use the newly introduced instance variable, $this->stack, instead of the method-local variable $stack with the
assertSame() assertion method.

Example 4.1: Using setUp() to create the stack fixture

<?php
use PHPUnit\Framework\TestCase;

class StackTest extends TestCase
{

protected $stack;

protected function setUp(): void
{

$this->stack = [];
}

35

PHPUnit Manual, Release latest

public function testEmpty()
{

$this->assertTrue(empty($this->stack));
}

public function testPush()
{

array_push($this->stack, 'foo');
$this->assertSame('foo', $this->stack[count($this->stack)-1]);
$this->assertFalse(empty($this->stack));

}

public function testPop()
{

array_push($this->stack, 'foo');
$this->assertSame('foo', array_pop($this->stack));
$this->assertTrue(empty($this->stack));

}
}

The setUp() and tearDown() template methods are run once for each test method (and on fresh instances) of the
test case class.

In addition, the setUpBeforeClass() and tearDownAfterClass() template methods are called before the
first test of the test case class is run and after the last test of the test case class is run, respectively.

The example below shows all template methods that are available in a test case class.

Example 4.2: Example showing all template methods available

<?php
use PHPUnit\Framework\TestCase;

class TemplateMethodsTest extends TestCase
{

public static function setUpBeforeClass(): void
{

fwrite(STDOUT, __METHOD__ . "\n");
}

protected function setUp(): void
{

fwrite(STDOUT, __METHOD__ . "\n");
}

protected function assertPreConditions(): void
{

fwrite(STDOUT, __METHOD__ . "\n");
}

public function testOne()
{

fwrite(STDOUT, __METHOD__ . "\n");
$this->assertTrue(true);

}

public function testTwo()
{

36 Chapter 4. Fixtures

PHPUnit Manual, Release latest

fwrite(STDOUT, __METHOD__ . "\n");
$this->assertTrue(false);

}

protected function assertPostConditions(): void
{

fwrite(STDOUT, __METHOD__ . "\n");
}

protected function tearDown(): void
{

fwrite(STDOUT, __METHOD__ . "\n");
}

public static function tearDownAfterClass(): void
{

fwrite(STDOUT, __METHOD__ . "\n");
}

protected function onNotSuccessfulTest(Throwable $t): void
{

fwrite(STDOUT, __METHOD__ . "\n");
throw $t;

}
}

$ phpunit TemplateMethodsTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

TemplateMethodsTest::setUpBeforeClass
TemplateMethodsTest::setUp
TemplateMethodsTest::assertPreConditions
TemplateMethodsTest::testOne
TemplateMethodsTest::assertPostConditions
TemplateMethodsTest::tearDown
.TemplateMethodsTest::setUp
TemplateMethodsTest::assertPreConditions
TemplateMethodsTest::testTwo
TemplateMethodsTest::tearDown
TemplateMethodsTest::onNotSuccessfulTest
FTemplateMethodsTest::tearDownAfterClass

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

1) TemplateMethodsTest::testTwo
Failed asserting that <boolean:false> is true.
/home/sb/TemplateMethodsTest.php:30

FAILURES!
Tests: 2, Assertions: 2, Failures: 1.

37

PHPUnit Manual, Release latest

4.1 More setUp() than tearDown()

setUp() and tearDown() are nicely symmetrical in theory but not in practice. In practice, you only need to
implement tearDown() if you have allocated external resources like files or sockets in setUp(). If your setUp()
just creates plain PHP objects, you can generally ignore tearDown(). However, if you create many objects in your
setUp(), you might want to unset() the variables pointing to those objects in your tearDown() so they can be
garbage collected. The garbage collection of test case objects is not predictable.

4.2 Variations

What happens when you have two tests with slightly different setups? There are two possibilities:

• If the setUp() code differs only slightly, move the code that differs from the setUp() code to the test
method.

• If you really have a different setUp(), you need a different test case class. Name the class after the difference
in the setup.

4.3 Sharing Fixture

There are few good reasons to share fixtures between tests, but in most cases the need to share a fixture between tests
stems from an unresolved design problem.

A good example of a fixture that makes sense to share across several tests is a database connection: you log into the
database once and reuse the database connection instead of creating a new connection for each test. This makes your
tests run faster.

Example 4.3 uses the setUpBeforeClass() and tearDownAfterClass() template methods to connect to
the database before the test case class’ first test and to disconnect from the database after the last test of the test case,
respectively.

Example 4.3: Sharing fixture between the tests of a test suite

<?php
use PHPUnit\Framework\TestCase;

class DatabaseTest extends TestCase
{

protected static $dbh;

public static function setUpBeforeClass(): void
{

self::$dbh = new PDO('sqlite::memory:');
}

public static function tearDownAfterClass(): void
{

self::$dbh = null;
}

}

It cannot be emphasized enough that sharing fixtures between tests reduces the value of the tests. The underlying
design problem is that objects are not loosely coupled. You will achieve better results solving the underlying design

38 Chapter 4. Fixtures

PHPUnit Manual, Release latest

problem and then writing tests using stubs (see Test Doubles), than by creating dependencies between tests at runtime
and ignoring the opportunity to improve your design.

4.4 Global State

It is hard to test code that uses singletons. The same is true for code that uses global variables. Typically, the code you
want to test is coupled strongly with a global variable and you cannot control its creation. An additional problem is
the fact that one test’s change to a global variable might break another test.

In PHP, global variables work like this:

• A global variable $foo = 'bar'; is stored as $GLOBALS['foo'] = 'bar';.

• The $GLOBALS variable is a so-called super-global variable.

• Super-global variables are built-in variables that are always available in all scopes.

• In the scope of a function or method, you may access the global variable $foo by either directly accessing
$GLOBALS['foo'] or by using global $foo; to create a local variable with a reference to the global
variable.

Besides global variables, static attributes of classes are also part of the global state.

Prior to version 6, by default, PHPUnit ran your tests in a way where changes to global and super-global variables
($GLOBALS, $_ENV, $_POST, $_GET, $_COOKIE, $_SERVER, $_FILES, $_REQUEST) do not affect other tests.

As of version 6, PHPUnit does not perform this backup and restore operation for global and super-global
variables by default anymore. It can be activated by using the --globals-backup option or setting
backupGlobals="true" in the XML configuration file.

By using the --static-backup option or setting backupStaticAttributes="true" in the XML config-
uration file, this isolation can be extended to static attributes of classes.

Note

The backup and restore operations for global variables and static class attributes use serialize() and
unserialize().

Objects of some classes (e.g., PDO) cannot be serialized and the backup operation will break when such an object is
stored e.g. in the $GLOBALS array.

The @backupGlobals annotation that is discussed in @backupGlobals can be used to control the backup and
restore operations for global variables. Alternatively, you can provide a blacklist of global variables that are to be
excluded from the backup and restore operations like this

class MyTest extends TestCase
{

protected $backupGlobalsBlacklist = ['globalVariable'];

// ...
}

Note

Setting the $backupGlobalsBlacklist property inside e.g. the setUp() method has no effect.

4.4. Global State 39

http://googletesting.blogspot.com/2008/05/tott-using-dependancy-injection-to.html

PHPUnit Manual, Release latest

The @backupStaticAttributes annotation discussed in @backupStaticAttributes can be used to back up all
static property values in all declared classes before each test and restore them afterwards.

It processes all classes that are declared at the time a test starts, not only the test class itself. It only applies to static
class properties, not static variables within functions.

Note

The @backupStaticAttributes operation is executed before a test method, but only if it is enabled. If a static
value was changed by a previously executed test that did not have @backupStaticAttributes enabled, then that
value will be backed up and restored — not the originally declared default value. PHP does not record the originally
declared default value of any static variable.

The same applies to static properties of classes that were newly loaded/declared within a test. They cannot be reset to
their originally declared default value after the test, since that value is unknown. Whichever value is set will leak into
subsequent tests.

For unit tests, it is recommended to explicitly reset the values of static properties under test in your setUp() code
instead (and ideally also tearDown(), so as to not affect subsequently executed tests).

You can provide a blacklist of static attributes that are to be excluded from the backup and restore operations:

class MyTest extends TestCase
{

protected $backupStaticAttributesBlacklist = [
'className' => ['attributeName']

];

// ...
}

Note

Setting the $backupStaticAttributesBlacklist property inside e.g. the setUp() method has no effect.

40 Chapter 4. Fixtures

CHAPTER 5

Organizing Tests

One of the goals of PHPUnit is that tests should be composable: we want to be able to run any number or combination
of tests together, for instance all tests for the whole project, or the tests for all classes of a component that is part of
the project, or just the tests for a single class.

PHPUnit supports different ways of organizing tests and composing them into a test suite. This chapter shows the
most commonly used approaches.

5.1 Composing a Test Suite Using the Filesystem

Probably the easiest way to compose a test suite is to keep all test case source files in a test directory. PHPUnit can
automatically discover and run the tests by recursively traversing the test directory.

Lets take a look at the test suite of the sebastianbergmann/money library. Looking at this project’s directory structure,
we see that the test case classes in the tests directory mirror the package and class structure of the System Under
Test (SUT) in the src directory:

src tests
`-- Currency.php `-- CurrencyTest.php
`-- IntlFormatter.php `-- IntlFormatterTest.php
`-- Money.php `-- MoneyTest.php
`-- autoload.php

To run all tests for the library we just need to point the PHPUnit command-line test runner to the test directory:

$ phpunit --bootstrap src/autoload.php tests
PHPUnit latest.0 by Sebastian Bergmann and contributors.

.................................

Time: 636 ms, Memory: 3.50Mb

OK (33 tests, 52 assertions)

41

http://github.com/sebastianbergmann/money/

PHPUnit Manual, Release latest

Note

If you point the PHPUnit command-line test runner to a directory it will look for *Test.php files.

To run only the tests that are declared in the CurrencyTest test case class in tests/CurrencyTest.php we
can use the following command:

$ phpunit --bootstrap src/autoload.php tests/CurrencyTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

........

Time: 280 ms, Memory: 2.75Mb

OK (8 tests, 8 assertions)

For more fine-grained control of which tests to run we can use the --filter option:

$ phpunit --bootstrap src/autoload.php --filter testObjectCanBeConstructedForValidConstructorArgument
→˓tests
PHPUnit latest.0 by Sebastian Bergmann and contributors.

..

Time: 167 ms, Memory: 3.00Mb

OK (2 test, 2 assertions)

Note

A drawback of this approach is that we have no control over the order in which the tests are run. This can lead to
problems with regard to test dependencies, see Test Dependencies. In the next section you will see how you can make
the test execution order explicit by using the XML configuration file.

5.2 Composing a Test Suite Using XML Configuration

PHPUnit’s XML configuration file (The XML Configuration File) can also be used to compose a test suite. Example
5.1 shows a minimal phpunit.xml file that will add all *Test classes that are found in *Test.php files when
the tests directory is recursively traversed.

Example 5.1: Composing a Test Suite Using XML Configuration

<phpunit bootstrap="src/autoload.php">
<testsuites>
<testsuite name="money">

<directory>tests</directory>
</testsuite>

</testsuites>
</phpunit>

If phpunit.xml or phpunit.xml.dist (in that order) exist in the current working directory and
--configuration is not used, the configuration will be automatically read from that file.

42 Chapter 5. Organizing Tests

PHPUnit Manual, Release latest

The order in which tests are executed can be made explicit:

Example 5.2: Composing a Test Suite Using XML Configuration

<phpunit bootstrap="src/autoload.php">
<testsuites>
<testsuite name="money">

<file>tests/IntlFormatterTest.php</file>
<file>tests/MoneyTest.php</file>
<file>tests/CurrencyTest.php</file>

</testsuite>
</testsuites>

</phpunit>

5.2. Composing a Test Suite Using XML Configuration 43

PHPUnit Manual, Release latest

44 Chapter 5. Organizing Tests

CHAPTER 6

Risky Tests

PHPUnit can perform the additional checks documented below while it executes the tests.

6.1 Useless Tests

PHPUnit is by default strict about tests that do not test anything. This check can be disabled
by using the --dont-report-useless-tests option on the command line or by setting
beStrictAboutTestsThatDoNotTestAnything="false" in PHPUnit’s configuration file.

A test that does not perform an assertion will be marked as risky when this check is enabled. Expectations on mock
objects count as an assertion.

6.2 Unintentionally Covered Code

PHPUnit can be strict about unintentionally covered code. This check can be en-
abled by using the --strict-coverage option on the command line or by setting
beStrictAboutCoversAnnotation="true" in PHPUnit’s configuration file.

A test that is annotated with @covers and executes code that is not listed using a @covers or @uses annotation will
be marked as risky when this check is enabled.

Furthermore, by setting forceCoversAnnotation="true" in PHPUnit’s configuration file, a test can be
marked as risky when it does not have a @covers annotation.

6.3 Output During Test Execution

PHPUnit can be strict about output during tests. This check can be enabled by us-
ing the --disallow-test-output option on the command line or by setting
beStrictAboutOutputDuringTests="true" in PHPUnit’s configuration file.

45

PHPUnit Manual, Release latest

A test that emits output, for instance by invoking print in either the test code or the tested code, will be marked as risky
when this check is enabled.

6.4 Test Execution Timeout

A time limit can be enforced for the execution of a test if the PHP_Invoker package is installed and the pcntl
extension is available. The enforcing of this time limit can be enabled by using the --enforce-time-limit
option on the command line or by setting enforceTimeLimit="true" in PHPUnit’s configuration file.

A test annotated with @large will fail if it takes longer than 60 seconds to execute. This timeout is configurable via
the timeoutForLargeTests attribute in the configuration file.

A test annotated with @medium will fail if it takes longer than 10 seconds to execute. This timeout is configurable via
the timeoutForMediumTests attribute in the configuration configuration file.

A test annotated with @small will fail if it takes longer than 1 second to execute. This timeout is configurable via the
timeoutForSmallTests attribute in the configuration file.

Note

Tests need to be explicitly annotated by either @small, @medium, or @large to enable run time limits.

6.5 Global State Manipulation

PHPUnit can be strict about tests that manipulate global state. This check can be en-
abled by using the --strict-global-state option on the command line or by setting
beStrictAboutChangesToGlobalState="true" in PHPUnit’s configuration file.

46 Chapter 6. Risky Tests

CHAPTER 7

Incomplete and Skipped Tests

7.1 Incomplete Tests

When you are working on a new test case class, you might want to begin by writing empty test methods such as:

public function testSomething()
{
}

to keep track of the tests that you have to write. The problem with empty test methods is that they are interpreted as
a success by the PHPUnit framework. This misinterpretation leads to the test reports being useless – you cannot see
whether a test is actually successful or just not yet implemented. Calling $this->fail() in the unimplemented
test method does not help either, since then the test will be interpreted as a failure. This would be just as wrong as
interpreting an unimplemented test as a success.

If we think of a successful test as a green light and a test failure as a red light, we need an additional yellow light to
mark a test as being incomplete or not yet implemented. PHPUnit\Framework\IncompleteTest is a marker
interface for marking an exception that is raised by a test method as the result of the test being incomplete or cur-
rently not implemented. PHPUnit\Framework\IncompleteTestError is the standard implementation of
this interface.

Example 7.1 shows a test case class, SampleTest, that contains one test method, testSomething().
By calling the convenience method markTestIncomplete() (which automatically raises an
PHPUnit\Framework\IncompleteTestError exception) in the test method, we mark the test as be-
ing incomplete.

Example 7.1: Marking a test as incomplete

<?php
use PHPUnit\Framework\TestCase;

class SampleTest extends TestCase
{

public function testSomething()
{

47

PHPUnit Manual, Release latest

// Optional: Test anything here, if you want.
$this->assertTrue(true, 'This should already work.');

// Stop here and mark this test as incomplete.
$this->markTestIncomplete(
'This test has not been implemented yet.'

);
}

}
?>

An incomplete test is denoted by an I in the output of the PHPUnit command-line test runner, as shown in the following
example:

$ phpunit --verbose SampleTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

I

Time: 0 seconds, Memory: 3.95Mb

There was 1 incomplete test:

1) SampleTest::testSomething
This test has not been implemented yet.

/home/sb/SampleTest.php:12
OK, but incomplete or skipped tests!
Tests: 1, Assertions: 1, Incomplete: 1.

Table 7.1 shows the API for marking tests as incomplete.

Table 7.1: API for Incomplete Tests
Method Meaning
void markTestIncomplete() Marks the current test as incomplete.
void markTestIncomplete(string
$message)

Marks the current test as incomplete using $message as an ex-
planatory message.

7.2 Skipping Tests

Not all tests can be run in every environment. Consider, for instance, a database abstraction layer that has several
drivers for the different database systems it supports. The tests for the MySQL driver can of course only be run if a
MySQL server is available.

Example 7.2 shows a test case class, DatabaseTest, that contains one test method, testConnection(). In
the test case class’ setUp() template method we check whether the MySQLi extension is available and use the
markTestSkipped() method to skip the test if it is not.

Example 7.2: Skipping a test

<?php
use PHPUnit\Framework\TestCase;

class DatabaseTest extends TestCase

48 Chapter 7. Incomplete and Skipped Tests

PHPUnit Manual, Release latest

{
protected function setUp(): void
{

if (!extension_loaded('mysqli')) {
$this->markTestSkipped(
'The MySQLi extension is not available.'

);
}

}

public function testConnection()
{

// ...
}

}
?>

A test that has been skipped is denoted by an S in the output of the PHPUnit command-line test runner, as shown in
the following example:

$ phpunit --verbose DatabaseTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

S

Time: 0 seconds, Memory: 3.95Mb

There was 1 skipped test:

1) DatabaseTest::testConnection
The MySQLi extension is not available.

/home/sb/DatabaseTest.php:9
OK, but incomplete or skipped tests!
Tests: 1, Assertions: 0, Skipped: 1.

Table 7.2 shows the API for skipping tests.

Table 7.2: API for Skipping Tests
Method Meaning
void markTestSkipped() Marks the current test as skipped.
void markTestSkipped(string
$message)

Marks the current test as skipped using $message as an explana-
tory message.

7.3 Skipping Tests using @requires

In addition to the above methods it is also possible to use the @requires annotation to express common precondi-
tions for a test case.

7.3. Skipping Tests using @requires 49

PHPUnit Manual, Release latest

Table 7.3: Possible @requires usages
Type Possible Values Examples Another example
PHP Any PHP version identifier along with an op-

tional operator
@requires PHP
7.1.20

@requires PHP >= 7.2

PHPUnitAny PHPUnit version identifier along with an
optional operator

@requires PH-
PUnit 7.3.1

@requires PHPUnit < 8

OS A regexp matching PHP_OS @requires OS
Linux

@requires OS
WIN32|WINNT

OSFAMILYAny OS family @requires OS-
FAMILY Solaris

@requires OSFAMILY Win-
dows

functionAny valid parameter to function_exists @requires func-
tion imap_open

@requires function Reflection-
Method::setAccessible

extensionAny extension name along with an optional ver-
sion identifier and optional operator

@requires exten-
sion mysqli

@requires extension redis >=
2.2.0

The following operators are supported for PHP, PHPUnit, and extension version constraints: <, <=, >, >=, =, ==, !=,
<>.

Example 7.3: Skipping test cases using @requires

<?php
use PHPUnit\Framework\TestCase;

/**
* @requires extension mysqli

*/
class DatabaseTest extends TestCase
{

/**
* @requires PHP >= 5.3

*/
public function testConnection()
{

// Test requires the mysqli extension and PHP >= 5.3
}

// ... All other tests require the mysqli extension
}
?>

If you are using syntax that doesn’t compile with a certain PHP Version look into the xml configuration for version
dependent includes in The <testsuites> Element

50 Chapter 7. Incomplete and Skipped Tests

http://php.net/manual/en/reserved.constants.php#constant.php-os
http://php.net/manual/en/reserved.constants.php#constant.php-os-family
http://php.net/function_exists

CHAPTER 8

Test Doubles

Gerard Meszaros introduces the concept of Test Doubles in Meszaros2007 like this:

Gerard Meszaros:

Sometimes it is just plain hard to test the system under test (SUT) because it depends on other components
that cannot be used in the test environment. This could be because they aren’t available, they will not
return the results needed for the test or because executing them would have undesirable side effects. In
other cases, our test strategy requires us to have more control or visibility of the internal behavior of the
SUT.

When we are writing a test in which we cannot (or chose not to) use a real depended-on component
(DOC), we can replace it with a Test Double. The Test Double doesn’t have to behave exactly like the
real DOC; it merely has to provide the same API as the real one so that the SUT thinks it is the real one!

The createStub($type), createMock($type), and getMockBuilder($type) methods provided by
PHPUnit can be used in a test to automatically generate an object that can act as a test double for the specified original
type (interface or class name). This test double object can be used in every context where an object of the original type
is expected or required.

The createStub($type) and createMock($type) method immediately return a test double object for the
specified type (interface or class). The creation of this test double is performed using best practice defaults. The
__construct() and __clone() methods of the original class are not executed and the arguments passed to
a method of the test double will not be cloned. If these defaults are not what you need then you can use the
getMockBuilder($type) method to customize the test double generation using a fluent interface.

By default, all methods of the original class are replaced with a dummy implementation that just returns null (without
calling the original method). Using the will($this->returnValue())method, for instance, you can configure
these dummy implementations to return a value when called.

Limitation: final, private, and static methods

Please note that final, private, and static methods cannot be stubbed or mocked. They are ignored by
PHPUnit’s test double functionality and retain their original behavior except for staticmethods that will be replaced
by a method throwing a \PHPUnit\Framework\MockObject\BadMethodCallException exception.

51

PHPUnit Manual, Release latest

8.1 Stubs

The practice of replacing an object with a test double that (optionally) returns configured return values is referred to as
stubbing. You can use a stub to “replace a real component on which the SUT depends so that the test has a control point
for the indirect inputs of the SUT. This allows the test to force the SUT down paths it might not otherwise execute”.

Example 8.2 shows how to stub method calls and set up return values. We first use the createStub() method
that is provided by the PHPUnit\Framework\TestCase class to set up a stub object that looks like an object
of SomeClass (Example 8.1). We then use the Fluent Interface that PHPUnit provides to specify the behavior for
the stub. In essence, this means that you do not need to create several temporary objects and wire them together
afterwards. Instead, you chain method calls as shown in the example. This leads to more readable and “fluent” code.

Example 8.1: The class we want to stub

<?php
class SomeClass
{

public function doSomething()
{

// Do something.
}

}

Example 8.2: Stubbing a method call to return a fixed value

<?php
use PHPUnit\Framework\TestCase;

class StubTest extends TestCase
{

public function testStub()
{

// Create a stub for the SomeClass class.
$stub = $this->createStub(SomeClass::class);

// Configure the stub.
$stub->method('doSomething')

->willReturn('foo');

// Calling $stub->doSomething() will now return
// 'foo'.
$this->assertSame('foo', $stub->doSomething());

}
}

Limitation: Methods named “method”

The example shown above only works when the original class does not declare a method named “method”.

If the original class does declare a method named “method” then $stub->expects($this->any())->method('doSomething')->willReturn('foo');
has to be used.

“Behind the scenes”, PHPUnit automatically generates a new PHP class that implements the desired behavior when
the createStub() method is used.

Please note that createStub() will automatically and recursively stub return values based on a method’s return
type. Consider the example shown below:

52 Chapter 8. Test Doubles

http://martinfowler.com/bliki/FluentInterface.html

PHPUnit Manual, Release latest

Example 8.3: A method with a return type declaration

<?php declare(strict_types=1);
class C
{

public function m(): D
{

// Do something.
}

}

In the example shown above, the C::m() method has a return type declaration indicating that this method returns an
object of type D. When a test double for C is created and no return value is configured for m() using willReturn()
(see above), for instance, then when m() is invoked PHPUnit will automatically create a test double for D to be
returned.

Similarily, if m had a return type declaration for a scalar type then a return value such as 0 (for int), 0.0 (for float),
or [] (for array) would be generated.

Example 8.4 shows an example of how to use the Mock Builder’s fluent interface to configure the creation of the test
double. The configuration of this test double uses the same best practice defaults used by createStub().

Example 8.4: Using the Mock Builder API can be used to configure the generated test double class

<?php
use PHPUnit\Framework\TestCase;

class StubTest extends TestCase
{

public function testStub()
{

// Create a stub for the SomeClass class.
$stub = $this->getMockBuilder(SomeClass::class)

->disableOriginalConstructor()
->disableOriginalClone()
->disableArgumentCloning()
->disallowMockingUnknownTypes()
->getMock();

// Configure the stub.
$stub->method('doSomething')

->willReturn('foo');

// Calling $stub->doSomething() will now return
// 'foo'.
$this->assertSame('foo', $stub->doSomething());

}
}

In the examples so far we have been returning simple values using willReturn($value). This short syntax is the
same as will($this->returnValue($value)). We can use variations on this longer syntax to achieve more
complex stubbing behaviour.

Sometimes you want to return one of the arguments of a method call (unchanged) as the result of a stubbed method
call. Example 8.5 shows how you can achieve this using returnArgument() instead of returnValue().

8.1. Stubs 53

PHPUnit Manual, Release latest

Example 8.5: Stubbing a method call to return one of the arguments

<?php
use PHPUnit\Framework\TestCase;

class StubTest extends TestCase
{

public function testReturnArgumentStub()
{

// Create a stub for the SomeClass class.
$stub = $this->createStub(SomeClass::class);

// Configure the stub.
$stub->method('doSomething')

->will($this->returnArgument(0));

// $stub->doSomething('foo') returns 'foo'
$this->assertSame('foo', $stub->doSomething('foo'));

// $stub->doSomething('bar') returns 'bar'
$this->assertSame('bar', $stub->doSomething('bar'));

}
}

When testing a fluent interface, it is sometimes useful to have a stubbed method return a reference to the stubbed
object. Example 8.6 shows how you can use returnSelf() to achieve this.

Example 8.6: Stubbing a method call to return a reference to the stub object

<?php
use PHPUnit\Framework\TestCase;

class StubTest extends TestCase
{

public function testReturnSelf()
{

// Create a stub for the SomeClass class.
$stub = $this->createStub(SomeClass::class);

// Configure the stub.
$stub->method('doSomething')

->will($this->returnSelf());

// $stub->doSomething() returns $stub
$this->assertSame($stub, $stub->doSomething());

}
}

Sometimes a stubbed method should return different values depending on a predefined list of arguments. You can use
returnValueMap() to create a map that associates arguments with corresponding return values. See Example 8.7
for an example.

Example 8.7: Stubbing a method call to return the value from a map

<?php
use PHPUnit\Framework\TestCase;

class StubTest extends TestCase

54 Chapter 8. Test Doubles

PHPUnit Manual, Release latest

{
public function testReturnValueMapStub()
{

// Create a stub for the SomeClass class.
$stub = $this->createStub(SomeClass::class);

// Create a map of arguments to return values.
$map = [

['a', 'b', 'c', 'd'],
['e', 'f', 'g', 'h']

];

// Configure the stub.
$stub->method('doSomething')

->will($this->returnValueMap($map));

// $stub->doSomething() returns different values depending on
// the provided arguments.
$this->assertSame('d', $stub->doSomething('a', 'b', 'c'));
$this->assertSame('h', $stub->doSomething('e', 'f', 'g'));

}
}

When the stubbed method call should return a calculated value instead of a fixed one (see returnValue()) or an
(unchanged) argument (see returnArgument()), you can use returnCallback() to have the stubbed method
return the result of a callback function or method. See Example 8.8 for an example.

Example 8.8: Stubbing a method call to return a value from a callback

<?php
use PHPUnit\Framework\TestCase;

class StubTest extends TestCase
{

public function testReturnCallbackStub()
{

// Create a stub for the SomeClass class.
$stub = $this->createStub(SomeClass::class);

// Configure the stub.
$stub->method('doSomething')

->will($this->returnCallback('str_rot13'));

// $stub->doSomething($argument) returns str_rot13($argument)
$this->assertSame('fbzrguvat', $stub->doSomething('something'));

}
}

A simpler alternative to setting up a callback method may be to specify a list of desired return values. You can do this
with the onConsecutiveCalls() method. See Example 8.9 for an example.

Example 8.9: Stubbing a method call to return a list of values in the specified order

<?php
use PHPUnit\Framework\TestCase;

class StubTest extends TestCase
{

8.1. Stubs 55

PHPUnit Manual, Release latest

public function testOnConsecutiveCallsStub()
{

// Create a stub for the SomeClass class.
$stub = $this->createStub(SomeClass::class);

// Configure the stub.
$stub->method('doSomething')

->will($this->onConsecutiveCalls(2, 3, 5, 7));

// $stub->doSomething() returns a different value each time
$this->assertSame(2, $stub->doSomething());
$this->assertSame(3, $stub->doSomething());
$this->assertSame(5, $stub->doSomething());

}
}

Instead of returning a value, a stubbed method can also raise an exception. Example 8.10 shows how to use
throwException() to do this.

Example 8.10: Stubbing a method call to throw an exception

<?php
use PHPUnit\Framework\TestCase;

class StubTest extends TestCase
{

public function testThrowExceptionStub()
{

// Create a stub for the SomeClass class.
$stub = $this->createStub(SomeClass::class);

// Configure the stub.
$stub->method('doSomething')

->will($this->throwException(new Exception));

// $stub->doSomething() throws Exception
$stub->doSomething();

}
}

Alternatively, you can write the stub yourself and improve your design along the way. Widely used resources are
accessed through a single façade, so you can easily replace the resource with the stub. For example, instead of having
direct database calls scattered throughout the code, you have a single Database object, an implementor of the
IDatabase interface. Then, you can create a stub implementation of IDatabase and use it for your tests. You can
even create an option for running the tests with the stub database or the real database, so you can use your tests for
both local testing during development and integration testing with the real database.

Functionality that needs to be stubbed out tends to cluster in the same object, improving cohesion. By presenting the
functionality with a single, coherent interface you reduce the coupling with the rest of the system.

8.2 Mock Objects

The practice of replacing an object with a test double that verifies expectations, for instance asserting that a method
has been called, is referred to as mocking.

You can use a mock object “as an observation point that is used to verify the indirect outputs of the SUT as it is

56 Chapter 8. Test Doubles

PHPUnit Manual, Release latest

exercised. Typically, the mock object also includes the functionality of a test stub in that it must return values to the
SUT if it hasn’t already failed the tests but the emphasis is on the verification of the indirect outputs. Therefore, a
mock object is a lot more than just a test stub plus assertions; it is used in a fundamentally different way” (Gerard
Meszaros).

Limitation: Automatic verification of expectations

Only mock objects generated within the scope of a test will be verified automatically by PHPUnit. Mock objects
generated in data providers, for instance, or injected into the test using the @depends annotation will not be verified
automatically by PHPUnit.

Here is an example: suppose we want to test that the correct method, update() in our example, is called on an
object that observes another object. Example 8.11 shows the code for the Subject and Observer classes that are
part of the System under Test (SUT).

Example 8.11: The Subject and Observer classes that are part of the System under Test (SUT)

<?php
use PHPUnit\Framework\TestCase;

class Subject
{

protected $observers = [];
protected $name;

public function __construct($name)
{

$this->name = $name;
}

public function getName()
{

return $this->name;
}

public function attach(Observer $observer)
{

$this->observers[] = $observer;
}

public function doSomething()
{

// Do something.
// ...

// Notify observers that we did something.
$this->notify('something');

}

public function doSomethingBad()
{

foreach ($this->observers as $observer) {
$observer->reportError(42, 'Something bad happened', $this);

}
}

protected function notify($argument)

8.2. Mock Objects 57

PHPUnit Manual, Release latest

{
foreach ($this->observers as $observer) {

$observer->update($argument);
}

}

// Other methods.
}

class Observer
{

public function update($argument)
{

// Do something.
}

public function reportError($errorCode, $errorMessage, Subject $subject)
{

// Do something
}

// Other methods.
}

Example 8.12 shows how to use a mock object to test the interaction between Subject and Observer objects.

We first use the createMock() method that is provided by the PHPUnit\Framework\TestCase class to set
up a mock object for the Observer.

Because we are interested in verifying that a method is called, and which arguments it is called with, we introduce the
expects() and with() methods to specify how this interaction should look.

Example 8.12: Testing that a method gets called once and with a specified argument

<?php
use PHPUnit\Framework\TestCase;

class SubjectTest extends TestCase
{

public function testObserversAreUpdated()
{

// Create a mock for the Observer class,
// only mock the update() method.
$observer = $this->createMock(Observer::class);

// Set up the expectation for the update() method
// to be called only once and with the string 'something'
// as its parameter.
$observer->expects($this->once())

->method('update')
->with($this->equalTo('something'));

// Create a Subject object and attach the mocked
// Observer object to it.
$subject = new Subject('My subject');
$subject->attach($observer);

// Call the doSomething() method on the $subject object
// which we expect to call the mocked Observer object's

58 Chapter 8. Test Doubles

PHPUnit Manual, Release latest

// update() method with the string 'something'.
$subject->doSomething();

}
}

The with() method can take any number of arguments, corresponding to the number of arguments to the method
being mocked. You can specify more advanced constraints on the method’s arguments than a simple match.

Example 8.13: Testing that a method gets called with a number of arguments constrained in different ways

<?php
use PHPUnit\Framework\TestCase;

class SubjectTest extends TestCase
{

public function testErrorReported()
{

// Create a mock for the Observer class, mocking the
// reportError() method
$observer = $this->createMock(Observer::class);

$observer->expects($this->once())
->method('reportError')
->with(

$this->greaterThan(0),
$this->stringContains('Something'),
$this->anything()

);

$subject = new Subject('My subject');
$subject->attach($observer);

// The doSomethingBad() method should report an error to the observer
// via the reportError() method
$subject->doSomethingBad();

}
}

The withConsecutive() method can take any number of arrays of arguments, depending on the calls you want
to test against. Each array is a list of constraints corresponding to the arguments of the method being mocked, like in
with().

Example 8.14: Testing that a method gets called two times with specific arguments.

<?php
use PHPUnit\Framework\TestCase;

class FooTest extends TestCase
{

public function testFunctionCalledTwoTimesWithSpecificArguments()
{

$mock = $this->getMockBuilder(stdClass::class)
->setMethods(['set'])
->getMock();

$mock->expects($this->exactly(2))
->method('set')
->withConsecutive(

8.2. Mock Objects 59

PHPUnit Manual, Release latest

[$this->equalTo('foo'), $this->greaterThan(0)],
[$this->equalTo('bar'), $this->greaterThan(0)]

);

$mock->set('foo', 21);
$mock->set('bar', 48);

}
}

The callback() constraint can be used for more complex argument verification. This constraint takes a PHP
callback as its only argument. The PHP callback will receive the argument to be verified as its only argument and
should return true if the argument passes verification and false otherwise.

Example 8.15: More complex argument verification

<?php
use PHPUnit\Framework\TestCase;

class SubjectTest extends TestCase
{

public function testErrorReported()
{

// Create a mock for the Observer class, mocking the
// reportError() method
$observer = $this->createMock(Observer::class);

$observer->expects($this->once())
->method('reportError')
->with(

$this->greaterThan(0),
$this->stringContains('Something'),
$this->callback(function($subject)
{

return is_callable([$subject, 'getName']) &&
$subject->getName() == 'My subject';

}
));

$subject = new Subject('My subject');
$subject->attach($observer);

// The doSomethingBad() method should report an error to the observer
// via the reportError() method
$subject->doSomethingBad();

}
}

Example 8.16: Testing that a method gets called once and with the identical object as was passed

<?php
use PHPUnit\Framework\TestCase;

class FooTest extends TestCase
{

public function testIdenticalObjectPassed()
{

$expectedObject = new stdClass;

60 Chapter 8. Test Doubles

PHPUnit Manual, Release latest

$mock = $this->getMockBuilder(stdClass::class)
->setMethods(['foo'])
->getMock();

$mock->expects($this->once())
->method('foo')
->with($this->identicalTo($expectedObject));

$mock->foo($expectedObject);
}

}

Example 8.17: Create a mock object with cloning parameters enabled

<?php
use PHPUnit\Framework\TestCase;

class FooTest extends TestCase
{

public function testIdenticalObjectPassed()
{

$cloneArguments = true;

$mock = $this->getMockBuilder(stdClass::class)
->enableArgumentCloning()
->getMock();

// now your mock clones parameters so the identicalTo constraint
// will fail.

}
}

Constraints shows the constraints that can be applied to method arguments and Table 8.1 shows the matchers that are
available to specify the number of invocations.

Table 8.1: Matchers
Matcher Meaning
PHPUnit\Framework\MockObject\Matcher\AnyInvokedCount
any()

Returns a matcher that matches when the method it is
evaluated for is executed zero or more times.

PHPUnit\Framework\MockObject\Matcher\InvokedCount
never()

Returns a matcher that matches when the method it is
evaluated for is never executed.

PHPUnit\Framework\MockObject\Matcher\InvokedAtLeastOnce
atLeastOnce()

Returns a matcher that matches when the method it is
evaluated for is executed at least once.

PHPUnit\Framework\MockObject\Matcher\InvokedCount
once()

Returns a matcher that matches when the method it is
evaluated for is executed exactly once.

PHPUnit\Framework\MockObject\Matcher\InvokedCount
exactly(int $count)

Returns a matcher that matches when the method it is
evaluated for is executed exactly $count times.

PHPUnit\Framework\MockObject\Matcher\InvokedAtIndex
at(int $index)

Returns a matcher that matches when the method it is
evaluated for is invoked at the given $index.

Note

The $index parameter for the at() matcher refers to the index, starting at zero, in all method invocations for a
given mock object. Exercise caution when using this matcher as it can lead to brittle tests which are too closely tied to

8.2. Mock Objects 61

PHPUnit Manual, Release latest

specific implementation details.

As mentioned in the beginning, when the defaults used by the createStub() and createMock() methods to
generate the test double do not match your needs then you can use the getMockBuilder($type) method to
customize the test double generation using a fluent interface. Here is a list of methods provided by the Mock Builder:

• setMethods(array $methods) can be called on the Mock Builder object to specify the methods that are
to be replaced with a configurable test double. The behavior of the other methods is not changed. If you call
setMethods(null), then no methods will be replaced.

• setMethodsExcept(array $methods) can be called on the Mock Builder object to specify the meth-
ods that will not be replaced with a configurable test double while replacing all other public methods. This
works inverse to setMethods().

• setConstructorArgs(array $args) can be called to provide a parameter array that is passed to the
original class’ constructor (which is not replaced with a dummy implementation by default).

• setMockClassName($name) can be used to specify a class name for the generated test double class.

• disableOriginalConstructor() can be used to disable the call to the original class’ constructor.

• disableOriginalClone() can be used to disable the call to the original class’ clone constructor.

• disableAutoload() can be used to disable __autoload() during the generation of the test double class.

8.3 Prophecy

Prophecy is a “highly opinionated yet very powerful and flexible PHP object mocking framework. Though initially
it was created to fulfil phpspec2 needs, it is flexible enough to be used inside any testing framework out there with
minimal effort”.

PHPUnit has built-in support for using Prophecy to create test doubles. Example 8.18 shows how the same test shown
in Example 8.12 can be expressed using Prophecy’s philosophy of prophecies and revelations:

Example 8.18: Testing that a method gets called once and with a specified argument

<?php
use PHPUnit\Framework\TestCase;

class SubjectTest extends TestCase
{

public function testObserversAreUpdated()
{

$subject = new Subject('My subject');

// Create a prophecy for the Observer class.
$observer = $this->prophesize(Observer::class);

// Set up the expectation for the update() method
// to be called only once and with the string 'something'
// as its parameter.
$observer->update('something')->shouldBeCalled();

// Reveal the prophecy and attach the mock object
// to the Subject.
$subject->attach($observer->reveal());

// Call the doSomething() method on the $subject object

62 Chapter 8. Test Doubles

https://github.com/phpspec/prophecy

PHPUnit Manual, Release latest

// which we expect to call the mocked Observer object's
// update() method with the string 'something'.
$subject->doSomething();

}
}

Please refer to the documentation for Prophecy for further details on how to create, configure, and use stubs, spies,
and mocks using this alternative test double framework.

8.4 Mocking Traits and Abstract Classes

The getMockForTrait() method returns a mock object that uses a specified trait. All abstract methods of the
given trait are mocked. This allows for testing the concrete methods of a trait.

Example 8.19: Testing the concrete methods of a trait

<?php
use PHPUnit\Framework\TestCase;

trait AbstractTrait
{

public function concreteMethod()
{

return $this->abstractMethod();
}

public abstract function abstractMethod();
}

class TraitClassTest extends TestCase
{

public function testConcreteMethod()
{

$mock = $this->getMockForTrait(AbstractTrait::class);

$mock->expects($this->any())
->method('abstractMethod')
->will($this->returnValue(true));

$this->assertTrue($mock->concreteMethod());
}

}

The getMockForAbstractClass() method returns a mock object for an abstract class. All abstract methods of
the given abstract class are mocked. This allows for testing the concrete methods of an abstract class.

Example 8.20: Testing the concrete methods of an abstract class

<?php
use PHPUnit\Framework\TestCase;

abstract class AbstractClass
{

public function concreteMethod()
{

return $this->abstractMethod();

8.4. Mocking Traits and Abstract Classes 63

https://github.com/phpspec/prophecy#how-to-use-it

PHPUnit Manual, Release latest

}

public abstract function abstractMethod();
}

class AbstractClassTest extends TestCase
{

public function testConcreteMethod()
{

$stub = $this->getMockForAbstractClass(AbstractClass::class);

$stub->expects($this->any())
->method('abstractMethod')
->will($this->returnValue(true));

$this->assertTrue($stub->concreteMethod());
}

}

8.5 Stubbing and Mocking Web Services

When your application interacts with a web service you want to test it without actually interacting with the web
service. To make the stubbing and mocking of web services easy, the getMockFromWsdl() can be used just like
getMock() (see above). The only difference is that getMockFromWsdl() returns a stub or mock based on a web
service description in WSDL and getMock() returns a stub or mock based on a PHP class or interface.

Example 8.21 shows how getMockFromWsdl() can be used to stub, for example, the web service described in
GoogleSearch.wsdl.

Example 8.21: Stubbing a web service

<?php
use PHPUnit\Framework\TestCase;

class GoogleTest extends TestCase
{

public function testSearch()
{

$googleSearch = $this->getMockFromWsdl(
'GoogleSearch.wsdl', 'GoogleSearch'

);

$directoryCategory = new stdClass;
$directoryCategory->fullViewableName = '';
$directoryCategory->specialEncoding = '';

$element = new stdClass;
$element->summary = '';
$element->URL = 'https://phpunit.de/';
$element->snippet = '...';
$element->title = 'PHPUnit';
$element->cachedSize = '11k';
$element->relatedInformationPresent = true;
$element->hostName = 'phpunit.de';
$element->directoryCategory = $directoryCategory;
$element->directoryTitle = '';

64 Chapter 8. Test Doubles

PHPUnit Manual, Release latest

$result = new stdClass;
$result->documentFiltering = false;
$result->searchComments = '';
$result->estimatedTotalResultsCount = 3.9000;
$result->estimateIsExact = false;
$result->resultElements = [$element];
$result->searchQuery = 'PHPUnit';
$result->startIndex = 1;
$result->endIndex = 1;
$result->searchTips = '';
$result->directoryCategories = [];
$result->searchTime = 0.248822;

$googleSearch->expects($this->any())
->method('doGoogleSearch')
->will($this->returnValue($result));

/**
* $googleSearch->doGoogleSearch() will now return a stubbed result and

* the web service's doGoogleSearch() method will not be invoked.

*/
$this->assertEquals(
$result,
$googleSearch->doGoogleSearch(
'00000000000000000000000000000000',
'PHPUnit',
0,
1,
false,
'',
false,
'',
'',
''

)
);

}
}

8.5. Stubbing and Mocking Web Services 65

PHPUnit Manual, Release latest

66 Chapter 8. Test Doubles

CHAPTER 9

Code Coverage Analysis

Wikipedia:

In computer science, code coverage is a measure used to describe the degree to which the source code of a
program is tested by a particular test suite. A program with high code coverage has been more thoroughly
tested and has a lower chance of containing software bugs than a program with low code coverage.

In this chapter you will learn all about PHPUnit’s code coverage functionality that provides an insight into what parts
of the production code are executed when the tests are run. It makes use of the php-code-coverage component, which in
turn leverages the code coverage functionality provided by the Xdebug or PCOV extensions for PHP or by PHPDBG.

Note

If you see a warning while running tests that no code coverage driver is available, it means that you are using the
PHP CLI binary (php) and do not have Xdebug loaded. The Xdebug installation guide explains how Xdebug can be
installed and configured. Alternatively, you may use the PHPDBG binary (phpdbg) instead of the PHP CLI one.

PHPUnit can generate an HTML-based code coverage report as well as XML-based logfiles with code coverage
information in various formats (Clover, Crap4J, PHPUnit). Code coverage information can also be reported as text
(and printed to STDOUT) and exported as PHP code for further processing.

Please refer to The Command-Line Test Runner for a list of command line switches that control code coverage func-
tionality as well as The <logging> Element for the relevant configuration settings.

9.1 Software Metrics for Code Coverage

Various software metrics exist to measure code coverage:

Line Coverage

The Line Coverage software metric measures whether each executable line was executed.

Function and Method Coverage

67

https://github.com/sebastianbergmann/php-code-coverage
https://xdebug.org/
https://github.com/krakjoe/pcov
https://www.php.net/manual/en/book.phpdbg.php
https://xdebug.org/docs/install

PHPUnit Manual, Release latest

The Function and Method Coverage software metric measures whether each function or method has been
invoked. php-code-coverage only considers a function or method as covered when all of its executable
lines are covered.

Class and Trait Coverage

The Class and Trait Coverage software metric measures whether each method of a class or trait is covered.
php-code-coverage only considers a class or trait as covered when all of its methods are covered.

Opcode Coverage

The Opcode Coverage software metric measures whether each opcode of a function or method has been
executed while running the test suite. A line of code usually compiles into more than one opcode. Line
Coverage regards a line of code as covered as soon as one of its opcodes is executed.

Branch Coverage

The Branch Coverage software metric measures whether the boolean expression of each control structure
evaluated to both true and false while running the test suite.

Path Coverage

The Path Coverage software metric measures whether each of the possible execution paths in a function
or method has been followed while running the test suite. An execution path is a unique sequence of
branches from the entry of the function or method to its exit.

Change Risk Anti-Patterns (CRAP) Index

The Change Risk Anti-Patterns (CRAP) Index is calculated based on the cyclomatic complexity and code
coverage of a unit of code. Code that is not too complex and has an adequate test coverage will have a
low CRAP index. The CRAP index can be lowered by writing tests and by refactoring the code to lower
its complexity.

Note

The Opcode Coverage, Branch Coverage, and Path Coverage software metrics are not yet supported by php-code-
coverage.

9.2 Whitelisting Files

It is mandatory to configure a whitelist for telling PHPUnit which sourcecode files to include in the code coverage
report. This can either be done using the --whitelist command line option or via the configuration file (see The
<filter> Element).

The addUncoveredFilesFromWhitelist and processUncoveredFilesFromWhitelist configura-
tion settings are available to configure how the whitelist is used:

• addUncoveredFilesFromWhitelist="false" means that only whitelisted files that have at least one
line of executed code are included in the code coverage report

• addUncoveredFilesFromWhitelist="true" (default) means that all whitelisted files are included in
the code coverage report even if not a single line of code of such a file is executed

• processUncoveredFilesFromWhitelist="false" (default) means that a whitelisted
file that has no executed lines of code will be added to the code coverage report (if
addUncoveredFilesFromWhitelist="true" is set) but it will not be loaded by PHPUnit and
it will therefore not be analysed for correct executable lines of code information

68 Chapter 9. Code Coverage Analysis

PHPUnit Manual, Release latest

• processUncoveredFilesFromWhitelist="true" means that a whitelisted file that has no executed
lines of code will be loaded by PHPUnit so that it can be analysed for correct executable lines of code informa-
tion

Note

Please note that the loading of sourcecode files that is performed when
processUncoveredFilesFromWhitelist="true" is set can cause problems when a sourcecode file
contains code outside the scope of a class or function, for instance.

9.3 Ignoring Code Blocks

Sometimes you have blocks of code that you cannot test and that you may want to ignore during code coverage
analysis. PHPUnit lets you do this using the @codeCoverageIgnore, @codeCoverageIgnoreStart and
@codeCoverageIgnoreEnd annotations as shown in Example 9.1.

Example 9.1: Using the @codeCoverageIgnore, @codeCoverageIgnoreStart and
@codeCoverageIgnoreEnd annotations

<?php
use PHPUnit\Framework\TestCase;

/**
* @codeCoverageIgnore

*/
class Foo
{

public function bar()
{
}

}

class Bar
{

/**
* @codeCoverageIgnore

*/
public function foo()
{
}

}

if (false) {
// @codeCoverageIgnoreStart
print '*';
// @codeCoverageIgnoreEnd

}

exit; // @codeCoverageIgnore
?>

The ignored lines of code (marked as ignored using the annotations) are counted as executed (if they are executable)
and will not be highlighted.

9.3. Ignoring Code Blocks 69

PHPUnit Manual, Release latest

9.4 Specifying Covered Code Parts

The @covers annotation (see the annotaction documentation) can be used in the test code to specify which code
parts a test class (or test method) wants to test. If provided, this effectively filters the code coverage report to include
executed code from the referenced code parts only. Example 9.2 shows an example.

Note

If a method is specificed with the @covers annotation, only the referenced method will be considered as covered, but
not methods called by this method. Hence, when a covered method is refactored using the extract method refactoring,
corresponding @covers annotations need to be added. This is the reason it is recommended to use this annotation
with class scope, not with method scope.

Example 9.2: Test class that specifies which class it wants to cover

<?php
use PHPUnit\Framework\TestCase;

/**
* @covers \Invoice

* @uses \Money

*/
class InvoiceTest extends TestCase
{

protected $subject;

protected function setUp(): void
{

$this->subject = new Invoice();
}

public function testAmountInitiallyIsEmpty()
{

$this->assertEquals(new Money(), $this->subject->getAmount);
}

}
?>

Example 9.3: Tests that specify which method they want to cover

<?php
use PHPUnit\Framework\TestCase;

class BankAccountTest extends TestCase
{

protected $ba;

protected function setUp(): void
{

$this->ba = new BankAccount;
}

/**
* @covers \BankAccount::getBalance

*/
public function testBalanceIsInitiallyZero()

70 Chapter 9. Code Coverage Analysis

PHPUnit Manual, Release latest

{
$this->assertSame(0, $this->ba->getBalance());

}

/**
* @covers \BankAccount::withdrawMoney

*/
public function testBalanceCannotBecomeNegative()
{

try {
$this->ba->withdrawMoney(1);

}

catch (BankAccountException $e) {
$this->assertSame(0, $this->ba->getBalance());

return;
}

$this->fail();
}

/**
* @covers \BankAccount::depositMoney

*/
public function testBalanceCannotBecomeNegative2()
{

try {
$this->ba->depositMoney(-1);

}

catch (BankAccountException $e) {
$this->assertSame(0, $this->ba->getBalance());

return;
}

$this->fail();
}

/**
* @covers \BankAccount::getBalance

* @covers \BankAccount::depositMoney

* @covers \BankAccount::withdrawMoney

*/
public function testDepositWithdrawMoney()
{

$this->assertSame(0, $this->ba->getBalance());
$this->ba->depositMoney(1);
$this->assertSame(1, $this->ba->getBalance());
$this->ba->withdrawMoney(1);
$this->assertSame(0, $this->ba->getBalance());

}
}
?>

It is also possible to specify that a test should not cover any method by using the @coversNothing annotation (see
@coversNothing). This can be helpful when writing integration tests to make sure you only generate code coverage

9.4. Specifying Covered Code Parts 71

PHPUnit Manual, Release latest

with unit tests.

Example 9.4: A test that specifies that no method should be covered

<?php
use PHPUnit\DbUnit\TestCase

class GuestbookIntegrationTest extends TestCase
{

/**
* @coversNothing

*/
public function testAddEntry()
{

$guestbook = new Guestbook();
$guestbook->addEntry("suzy", "Hello world!");

$queryTable = $this->getConnection()->createQueryTable(
'guestbook', 'SELECT * FROM guestbook'

);

$expectedTable = $this->createFlatXmlDataSet("expectedBook.xml")
->getTable("guestbook");

$this->assertTablesEqual($expectedTable, $queryTable);
}

}
?>

9.5 Edge Cases

This section shows noteworthy edge cases that lead to confusing code coverage information.

<?php
use PHPUnit\Framework\TestCase;

// Because it is "line based" and not statement base coverage
// one line will always have one coverage status
if (false) this_function_call_shows_up_as_covered();

// Due to how code coverage works internally these two lines are special.
// This line will show up as non executable
if (false)

// This line will show up as covered because it is actually the
// coverage of the if statement in the line above that gets shown here!
will_also_show_up_as_covered();

// To avoid this it is necessary that braces are used
if (false) {

this_call_will_never_show_up_as_covered();
}
?>

72 Chapter 9. Code Coverage Analysis

PHPUnit Manual, Release latest

9.6 Speeding Up Code Coverage with Xdebug

The performance of code coverage data collection with Xdebug 2.6 (and later) can be significantly improved by
delegating whitelist filtering to Xdebug.

In order to do this, the first step is to generate the filter script for Xdebug using the --dump-xdebug-filter
option:

$ phpunit --dump-xdebug-filter build/xdebug-filter.php
PHPUnit 7.4.0 by Sebastian Bergmann and contributors.

Runtime: PHP 7.2.11 with Xdebug 2.6.1
Configuration: /workspace/project/phpunit.xml

Wrote Xdebug filter script to build/xdebug-filter.php

Now we can use the --prepend option to load the Xdebug filter script as early as possible when we want to generate
a code coverage report:

$ phpunit --prepend build/xdebug-filter.php --coverage-html build/coverage-report

9.6. Speeding Up Code Coverage with Xdebug 73

PHPUnit Manual, Release latest

74 Chapter 9. Code Coverage Analysis

CHAPTER 10

Logging

PHPUnit can produce several types of logfiles.

10.1 Test Results (XML)

The XML logfile for test results produced by PHPUnit is based upon the one used by the JUnit task for Apache Ant.
The following example shows the XML logfile generated for the tests in ArrayTest:

<?xml version="1.0" encoding="UTF-8"?>
<testsuites>

<testsuite name="ArrayTest"
file="/home/sb/ArrayTest.php"
tests="2"
assertions="2"
failures="0"
errors="0"
time="0.016030">

<testcase name="testNewArrayIsEmpty"
class="ArrayTest"
file="/home/sb/ArrayTest.php"
line="6"
assertions="1"
time="0.008044"/>

<testcase name="testArrayContainsAnElement"
class="ArrayTest"
file="/home/sb/ArrayTest.php"
line="15"
assertions="1"
time="0.007986"/>

</testsuite>
</testsuites>

The following XML logfile was generated for two tests, testFailure and testError, of a test case class named
FailureErrorTest and shows how failures and errors are denoted.

75

http://ant.apache.org/manual/Tasks/junit.html

PHPUnit Manual, Release latest

<?xml version="1.0" encoding="UTF-8"?>
<testsuites>

<testsuite name="FailureErrorTest"
file="/home/sb/FailureErrorTest.php"
tests="2"
assertions="1"
failures="1"
errors="1"
time="0.019744">

<testcase name="testFailure"
class="FailureErrorTest"
file="/home/sb/FailureErrorTest.php"
line="6"
assertions="1"
time="0.011456">

<failure type="PHPUnit\Framework\ExpectationFailedException">
testFailure(FailureErrorTest)
Failed asserting that <integer:2> matches expected value <integer:1>.

/home/sb/FailureErrorTest.php:8
</failure>

</testcase>
<testcase name="testError"

class="FailureErrorTest"
file="/home/sb/FailureErrorTest.php"
line="11"
assertions="0"
time="0.008288">

<error type="Exception">testError(FailureErrorTest)
Exception:

/home/sb/FailureErrorTest.php:13
</error>

</testcase>
</testsuite>

</testsuites>

10.2 Code Coverage (XML)

The XML format for code coverage information logging produced by PHPUnit is loosely based upon the one used by
Clover. The following example shows the XML logfile generated for the tests in BankAccountTest:

<?xml version="1.0" encoding="UTF-8"?>
<coverage generated="1184835473" phpunit="3.6.0">

<project name="BankAccountTest" timestamp="1184835473">
<file name="/home/sb/BankAccount.php">
<class name="BankAccountException">
<metrics methods="0" coveredmethods="0" statements="0"

coveredstatements="0" elements="0" coveredelements="0"/>
</class>
<class name="BankAccount">
<metrics methods="4" coveredmethods="4" statements="13"

coveredstatements="5" elements="17" coveredelements="9"/>
</class>
<line num="77" type="method" count="3"/>

76 Chapter 10. Logging

http://www.atlassian.com/software/clover/

PHPUnit Manual, Release latest

<line num="79" type="stmt" count="3"/>
<line num="89" type="method" count="2"/>
<line num="91" type="stmt" count="2"/>
<line num="92" type="stmt" count="0"/>
<line num="93" type="stmt" count="0"/>
<line num="94" type="stmt" count="2"/>
<line num="96" type="stmt" count="0"/>
<line num="105" type="method" count="1"/>
<line num="107" type="stmt" count="1"/>
<line num="109" type="stmt" count="0"/>
<line num="119" type="method" count="1"/>
<line num="121" type="stmt" count="1"/>
<line num="123" type="stmt" count="0"/>
<metrics loc="126" ncloc="37" classes="2" methods="4" coveredmethods="4"

statements="13" coveredstatements="5" elements="17"
coveredelements="9"/>

</file>
<metrics files="1" loc="126" ncloc="37" classes="2" methods="4"

coveredmethods="4" statements="13" coveredstatements="5"
elements="17" coveredelements="9"/>

</project>
</coverage>

10.3 Code Coverage (TEXT)

Human readable code coverage output for the command-line or a text file.

The aim of this output format is to provide a quick coverage overview while working on a small set of classes. For
bigger projects this output can be useful to get an quick overview of the projects coverage or when used with the
--filter functionality. When used from the command-line by writing to php://stdout this will honor the
--colors setting. Writing to standard out is the default option when used from the command-line. By default this
will only show files that have at least one covered line. This can only be changed via the showUncoveredFiles
xml configuration option. See The <logging> Element. By default all files and their coverage status are shown in the
detailed report. This can be changed via the showOnlySummary xml configuration option.

10.3. Code Coverage (TEXT) 77

PHPUnit Manual, Release latest

78 Chapter 10. Logging

CHAPTER 11

Extending PHPUnit

PHPUnit can be extended in various ways to make the writing of tests easier and customize the feedback you get from
running tests. Here are common starting points to extend PHPUnit.

11.1 Subclass PHPUnit\Framework\TestCase

Write custom assertions and utility methods in an abstract subclass of PHPUnit\Framework\TestCase and
derive your test case classes from that class. This is one of the easiest ways to extend PHPUnit.

11.2 Write custom assertions

When writing custom assertions it is the best practice to follow how PHPUnit’s own assertions are implemented.
As you can see in Example 11.1, the assertTrue() method is just a wrapper around the isTrue() and
assertThat() methods: isTrue() creates a matcher object that is passed on to assertThat() for evalu-
ation.

Example 11.1: The assertTrue() and isTrue() methods of the PHPUnit\Framework\Assert class

<?php
namespace PHPUnit\Framework;

use PHPUnit\Framework\TestCase;

abstract class Assert
{

// ...

/**
* Asserts that a condition is true.

*
* @param boolean $condition

79

PHPUnit Manual, Release latest

* @param string $message

* @throws PHPUnit\Framework\AssertionFailedError

*/
public static function assertTrue($condition, $message = '')
{

self::assertThat($condition, self::isTrue(), $message);
}

// ...

/**
* Returns a PHPUnit\Framework\Constraint\IsTrue matcher object.

*
* @return PHPUnit\Framework\Constraint\IsTrue

* @since Method available since Release 3.3.0

*/
public static function isTrue()
{

return new PHPUnit\Framework\Constraint\IsTrue;
}

// ...
}

Example 11.2 shows how PHPUnit\Framework\Constraint\IsTrue extends the abstract base class for
matcher objects (or constraints), PHPUnit\Framework\Constraint.

Example 11.2: The PHPUnit\FrameworkConstraint\IsTrue class

<?php
namespace PHPUnit\Framework\Constraint;

use PHPUnit\Framework\Constraint;

class IsTrue extends Constraint
{

/**
* Evaluates the constraint for parameter $other. Returns true if the

* constraint is met, false otherwise.

*
* @param mixed $other Value or object to evaluate.

* @return bool

*/
public function matches($other)
{

return $other === true;
}

/**
* Returns a string representation of the constraint.

*
* @return string

*/
public function toString()
{

return 'is true';
}

}?>

80 Chapter 11. Extending PHPUnit

PHPUnit Manual, Release latest

The effort of implementing the assertTrue() and isTrue() methods as well as the
PHPUnit\Framework\Constraint\IsTrue class yields the benefit that assertThat() automati-
cally takes care of evaluating the assertion and bookkeeping tasks such as counting it for statistics. Furthermore, the
isTrue() method can be used as a matcher when configuring mock objects.

11.3 Extending the TestRunner

PHPUnit’s test runner can be extended by registering objects that implement one or more of the following interfaces:

• AfterIncompleteTestHook

• AfterLastTestHook

• AfterRiskyTestHook

• AfterSkippedTestHook

• AfterSuccessfulTestHook

• AfterTestErrorHook

• AfterTestFailureHook

• AfterTestWarningHook

• AfterTestHook

• BeforeFirstTestHook

• BeforeTestHook

Each “hook”, meaning each of the interfaces listed above, represents an event that can occur while the tests are being
executed.

See The <extensions> Element for details on how to register extensions in PHPUnit’s XML configuration.

Example 11.3 shows an example for an extension implementing BeforeFirstTestHook and
AfterLastTestHook:

Example 11.3: TestRunner Extension Example

<?php declare(strict_types=1);
namespace Vendor;

use PHPUnit\Runner\BeforeFirstTestHook;
use PHPUnit\Runner\AfterLastTestHook;

final class MyExtension implements BeforeFirstTestHook, AfterLastTestHook
{

public function executeBeforeFirstTest(): void
{

// called before the first test is being run
}

public function executeAfterLastTest(): void
{

// called after the last test has been run
}

}

11.3. Extending the TestRunner 81

PHPUnit Manual, Release latest

11.3.1 Configuring extensions

You can configure PHPUnit extensions, assuming the extension accepts configuration values.

Example 11.4 shows an example how to make an extension configurable, by adding an __constructor() defini-
tion to the extension class:

Example 11.4: TestRunner Extension with constructor

<?php declare(strict_types=1);
namespace Vendor;

use PHPUnit\Runner\BeforeFirstTestHook;
use PHPUnit\Runner\AfterLastTestHook;

final class MyConfigurableExtension implements BeforeFirstTestHook, AfterLastTestHook
{

protected $config_value_1 = '';

protected $config_value_2 = 0;

public function __construct(string $value1 = '', int $value2 = 0)
{

$this->config_value_1 = $config_1;
$this->config_value_2 = $config_2;

}

public function executeBeforeFirstTest(): void
{

if (strlen($this-config_value_1) {
echo 'Testing with configuration value: ' . $this->config_value_1;

}
}

public function executeAfterLastTest(): void
{

if ($this->config_value_2 > 10) {
echo 'Second config value is OK!';

}
}

}

To input configuration to the extension via XML, the XML configuration file’s extensions section needs to be
updated to have configuration values, as shown in Example 11.5:

Example 11.5: TestRunner Extension configuration

<extensions>
<extension class="Vendor\MyUnconfigurableExtension" />
<extension class="Vendor\MyConfigurableExtension">

<arguments>
<string>Hello world!</string>
<int>15</int>

</arguments>
</extension>

</extensions>

See The <arguments> Element for details on how to use the arguments configuration.

82 Chapter 11. Extending PHPUnit

PHPUnit Manual, Release latest

Remember: all configuration is optional, so make sure your extension either has sane defaults in place, or that it
disables itself in case configuration is missing.

11.3. Extending the TestRunner 83

PHPUnit Manual, Release latest

84 Chapter 11. Extending PHPUnit

CHAPTER 12

Assertions

This appendix lists the various assertion methods that are available.

12.1 Static vs. Non-Static Usage of Assertion Methods

PHPUnit’s assertions are implemented in PHPUnit\Framework\Assert. PHPUnit\Framework\TestCase
inherits from PHPUnit\Framework\Assert.

The assertion methods are declared static and can be invoked from any context using
PHPUnit\Framework\Assert::assertTrue(), for instance, or using $this->assertTrue() or
self::assertTrue(), for instance, in a class that extends PHPUnit\Framework\TestCase.

In fact, you can even use global function wrappers such as assertTrue() in any context (including classes
that extend PHPUnit\Framework\TestCase) when you (manually) include the src/Framework/Assert/
Functions.php sourcecode file that comes with PHPUnit.

A common question, especially from developers new to PHPUnit, is whether using $this->assertTrue() or
self::assertTrue(), for instance, is “the right way” to invoke an assertion. The short answer is: there is no
right way. And there is no wrong way, either. It is a matter of personal preference.

For most people it just “feels right” to use $this->assertTrue() because the test method is invoked on a test
object. The fact that the assertion methods are declared static allows for (re)using them outside the scope of a test
object. Lastly, the global function wrappers allow developers to type less characters (assertTrue() instead of
$this->assertTrue() or self::assertTrue()).

12.2 assertArrayHasKey()

assertArrayHasKey(mixed $key, array $array[, string $message = ''])

Reports an error identified by $message if $array does not have the $key.

assertArrayNotHasKey() is the inverse of this assertion and takes the same arguments.

85

PHPUnit Manual, Release latest

Example 12.1: Usage of assertArrayHasKey()

<?php
use PHPUnit\Framework\TestCase;

class ArrayHasKeyTest extends TestCase
{

public function testFailure()
{

$this->assertArrayHasKey('foo', ['bar' => 'baz']);
}

}

$ phpunit ArrayHasKeyTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) ArrayHasKeyTest::testFailure
Failed asserting that an array has the key 'foo'.

/home/sb/ArrayHasKeyTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.3 assertClassHasAttribute()

assertClassHasAttribute(string $attributeName, string $className[, string
$message = ''])

Reports an error identified by $message if $className::attributeName does not exist.

assertClassNotHasAttribute() is the inverse of this assertion and takes the same arguments.

Example 12.2: Usage of assertClassHasAttribute()

<?php
use PHPUnit\Framework\TestCase;

class ClassHasAttributeTest extends TestCase
{

public function testFailure()
{

$this->assertClassHasAttribute('foo', stdClass::class);
}

}

$ phpunit ClassHasAttributeTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

86 Chapter 12. Assertions

PHPUnit Manual, Release latest

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) ClassHasAttributeTest::testFailure
Failed asserting that class "stdClass" has attribute "foo".

/home/sb/ClassHasAttributeTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.4 assertArraySubset()

assertArraySubset(array $subset, array $array[, bool $strict = false, string
$message = ''])

Reports an error identified by $message if $array does not contains the $subset.

$strict is a flag used to compare the identity of objects within arrays.

Example 12.3: Usage of assertArraySubset()

<?php
use PHPUnit\Framework\TestCase;

class ArraySubsetTest extends TestCase
{

public function testFailure()
{

$this->assertArraySubset(['config' => ['key-a', 'key-b']], ['config' => ['key-
→˓a']]);

}
}

$ phpunit ArraySubsetTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) EpilogEpilogTest::testNoFollowOption
Failed asserting that an array has the subset Array &0 (

'config' => Array &1 (
0 => 'key-a'
1 => 'key-b'

)
).

/home/sb/ArraySubsetTest.php:6

12.4. assertArraySubset() 87

PHPUnit Manual, Release latest

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.5 assertClassHasStaticAttribute()

assertClassHasStaticAttribute(string $attributeName, string $className[,
string $message = ''])

Reports an error identified by $message if $className::attributeName does not exist.

assertClassNotHasStaticAttribute() is the inverse of this assertion and takes the same arguments.

Example 12.4: Usage of assertClassHasStaticAttribute()

<?php
use PHPUnit\Framework\TestCase;

class ClassHasStaticAttributeTest extends TestCase
{

public function testFailure()
{

$this->assertClassHasStaticAttribute('foo', stdClass::class);
}

}

$ phpunit ClassHasStaticAttributeTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) ClassHasStaticAttributeTest::testFailure
Failed asserting that class "stdClass" has static attribute "foo".

/home/sb/ClassHasStaticAttributeTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.6 assertContains()

assertContains(mixed $needle, iterable $haystack[, string $message = ''])

Reports an error identified by $message if $needle is not an element of $haystack.

assertNotContains() is the inverse of this assertion and takes the same arguments.

88 Chapter 12. Assertions

PHPUnit Manual, Release latest

Example 12.5: Usage of assertContains()

<?php
use PHPUnit\Framework\TestCase;

class ContainsTest extends TestCase
{

public function testFailure()
{

$this->assertContains(4, [1, 2, 3]);
}

}

$ phpunit ContainsTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) ContainsTest::testFailure
Failed asserting that an array contains 4.

/home/sb/ContainsTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.7 assertStringContainsString()

assertStringContainsString(string $needle, string $haystack[, string $message
= ''])

Reports an error identified by $message if $needle is not a substring of $haystack.

assertStringNotContainsString() is the inverse of this assertion and takes the same arguments.

Example 12.6: Usage of assertStringContainsString()

<?php declare(strict_types=1);
use PHPUnit\Framework\TestCase;

final class StringContainsStringTest extends TestCase
{

public function testFailure()
{

$this->assertStringContainsString('foo', 'bar');
}

}

$ phpunit StringContainsStringTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

12.7. assertStringContainsString() 89

PHPUnit Manual, Release latest

F 1 / 1 (100
→˓%)

Time: 37 ms, Memory: 6.00 MB

There was 1 failure:

1) StringContainsStringTest::testFailure
Failed asserting that 'bar' contains "foo".

/home/sb/StringContainsStringTest.php:8

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.8 assertStringContainsStringIgnoringCase()

assertStringContainsStringIgnoringCase(string $needle, string $haystack[,
string $message = ''])

Reports an error identified by $message if $needle is not a substring of $haystack.

Differences in casing are ignored when $needle is searched for in $haystack.

assertStringNotContainsStringIgnoringCase() is the inverse of this assertion and takes the same
arguments.

Example 12.7: Usage of assertStringContainsStringIgnoringCase()

<?php declare(strict_types=1);
use PHPUnit\Framework\TestCase;

final class StringContainsStringIgnoringCaseTest extends TestCase
{

public function testFailure()
{

$this->assertStringContainsStringIgnoringCase('foo', 'bar');
}

}

$ phpunit StringContainsStringIgnoringCaseTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F 1 / 1 (100
→˓%)

Time: 40 ms, Memory: 6.00 MB

There was 1 failure:

1) StringContainsStringTest::testFailure
Failed asserting that 'bar' contains "foo".

/home/sb/StringContainsStringIgnoringCaseTest.php:8

90 Chapter 12. Assertions

PHPUnit Manual, Release latest

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.9 assertContainsOnly()

assertContainsOnly(string $type, iterable $haystack[, boolean $isNativeType =
null, string $message = ''])

Reports an error identified by $message if $haystack does not contain only variables of type $type.

$isNativeType is a flag used to indicate whether $type is a native PHP type or not.

assertNotContainsOnly() is the inverse of this assertion and takes the same arguments.

Example 12.8: Usage of assertContainsOnly()

<?php
use PHPUnit\Framework\TestCase;

class ContainsOnlyTest extends TestCase
{

public function testFailure()
{

$this->assertContainsOnly('string', ['1', '2', 3]);
}

}

$ phpunit ContainsOnlyTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) ContainsOnlyTest::testFailure
Failed asserting that Array (

0 => '1'
1 => '2'
2 => 3

) contains only values of type "string".

/home/sb/ContainsOnlyTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.10 assertContainsOnlyInstancesOf()

assertContainsOnlyInstancesOf(string $classname, Traversable|array $haystack[,
string $message = ''])

Reports an error identified by $message if $haystack does not contain only instances of class $classname.

12.9. assertContainsOnly() 91

PHPUnit Manual, Release latest

Example 12.9: Usage of assertContainsOnlyInstancesOf()

<?php
use PHPUnit\Framework\TestCase;

class ContainsOnlyInstancesOfTest extends TestCase
{

public function testFailure()
{

$this->assertContainsOnlyInstancesOf(
Foo::class,
[new Foo, new Bar, new Foo]

);
}

}

$ phpunit ContainsOnlyInstancesOfTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) ContainsOnlyInstancesOfTest::testFailure
Failed asserting that Array ([0]=> Bar Object(...)) is an instance of class

→˓"Foo".

/home/sb/ContainsOnlyInstancesOfTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.11 assertCount()

assertCount($expectedCount, $haystack[, string $message = ''])

Reports an error identified by $message if the number of elements in $haystack is not $expectedCount.

assertNotCount() is the inverse of this assertion and takes the same arguments.

Example 12.10: Usage of assertCount()

<?php
use PHPUnit\Framework\TestCase;

class CountTest extends TestCase
{

public function testFailure()
{

$this->assertCount(0, ['foo']);
}

}

92 Chapter 12. Assertions

PHPUnit Manual, Release latest

$ phpunit CountTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) CountTest::testFailure
Failed asserting that actual size 1 matches expected size 0.

/home/sb/CountTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.12 assertDirectoryExists()

assertDirectoryExists(string $directory[, string $message = ''])

Reports an error identified by $message if the directory specified by $directory does not exist.

assertDirectoryNotExists() is the inverse of this assertion and takes the same arguments.

Example 12.11: Usage of assertDirectoryExists()

<?php
use PHPUnit\Framework\TestCase;

class DirectoryExistsTest extends TestCase
{

public function testFailure()
{

$this->assertDirectoryExists('/path/to/directory');
}

}

$ phpunit DirectoryExistsTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) DirectoryExistsTest::testFailure
Failed asserting that directory "/path/to/directory" exists.

/home/sb/DirectoryExistsTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.12. assertDirectoryExists() 93

PHPUnit Manual, Release latest

12.13 assertDirectoryIsReadable()

assertDirectoryIsReadable(string $directory[, string $message = ''])

Reports an error identified by $message if the directory specified by $directory is not a directory or is not
readable.

assertDirectoryNotIsReadable() is the inverse of this assertion and takes the same arguments.

Example 12.12: Usage of assertDirectoryIsReadable()

<?php
use PHPUnit\Framework\TestCase;

class DirectoryIsReadableTest extends TestCase
{

public function testFailure()
{

$this->assertDirectoryIsReadable('/path/to/directory');
}

}

$ phpunit DirectoryIsReadableTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) DirectoryIsReadableTest::testFailure
Failed asserting that "/path/to/directory" is readable.

/home/sb/DirectoryIsReadableTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.14 assertDirectoryIsWritable()

assertDirectoryIsWritable(string $directory[, string $message = ''])

Reports an error identified by $message if the directory specified by $directory is not a directory or is not
writable.

assertDirectoryNotIsWritable() is the inverse of this assertion and takes the same arguments.

Example 12.13: Usage of assertDirectoryIsWritable()

<?php
use PHPUnit\Framework\TestCase;

class DirectoryIsWritableTest extends TestCase
{

public function testFailure()

94 Chapter 12. Assertions

PHPUnit Manual, Release latest

{
$this->assertDirectoryIsWritable('/path/to/directory');

}
}

$ phpunit DirectoryIsWritableTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) DirectoryIsWritableTest::testFailure
Failed asserting that "/path/to/directory" is writable.

/home/sb/DirectoryIsWritableTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.15 assertEmpty()

assertEmpty(mixed $actual[, string $message = ''])

Reports an error identified by $message if $actual is not empty.

assertNotEmpty() is the inverse of this assertion and takes the same arguments.

Example 12.14: Usage of assertEmpty()

<?php
use PHPUnit\Framework\TestCase;

class EmptyTest extends TestCase
{

public function testFailure()
{

$this->assertEmpty(['foo']);
}

}

$ phpunit EmptyTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) EmptyTest::testFailure
Failed asserting that an array is empty.

12.15. assertEmpty() 95

PHPUnit Manual, Release latest

/home/sb/EmptyTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.16 assertEqualXMLStructure()

assertEqualXMLStructure(DOMElement $expectedElement, DOMElement
$actualElement[, boolean $checkAttributes = false, string $message = ''])

Reports an error identified by $message if the XML Structure of the DOMElement in $actualElement is not
equal to the XML structure of the DOMElement in $expectedElement.

Example 12.15: Usage of assertEqualXMLStructure()

<?php
use PHPUnit\Framework\TestCase;

class EqualXMLStructureTest extends TestCase
{

public function testFailureWithDifferentNodeNames()
{

$expected = new DOMElement('foo');
$actual = new DOMElement('bar');

$this->assertEqualXMLStructure($expected, $actual);
}

public function testFailureWithDifferentNodeAttributes()
{

$expected = new DOMDocument;
$expected->loadXML('<foo bar="true" />');

$actual = new DOMDocument;
$actual->loadXML('<foo/>');

$this->assertEqualXMLStructure(
$expected->firstChild, $actual->firstChild, true

);
}

public function testFailureWithDifferentChildrenCount()
{

$expected = new DOMDocument;
$expected->loadXML('<foo><bar/><bar/><bar/></foo>');

$actual = new DOMDocument;
$actual->loadXML('<foo><bar/></foo>');

$this->assertEqualXMLStructure(
$expected->firstChild, $actual->firstChild

);
}

public function testFailureWithDifferentChildren()

96 Chapter 12. Assertions

PHPUnit Manual, Release latest

{
$expected = new DOMDocument;
$expected->loadXML('<foo><bar/><bar/><bar/></foo>');

$actual = new DOMDocument;
$actual->loadXML('<foo><baz/><baz/><baz/></foo>');

$this->assertEqualXMLStructure(
$expected->firstChild, $actual->firstChild

);
}

}

$ phpunit EqualXMLStructureTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

FFFF

Time: 0 seconds, Memory: 5.75Mb

There were 4 failures:

1) EqualXMLStructureTest::testFailureWithDifferentNodeNames
Failed asserting that two strings are equal.
--- Expected
+++ Actual
@@ @@
-'foo'
+'bar'

/home/sb/EqualXMLStructureTest.php:9

2) EqualXMLStructureTest::testFailureWithDifferentNodeAttributes
Number of attributes on node "foo" does not match
Failed asserting that 0 matches expected 1.

/home/sb/EqualXMLStructureTest.php:22

3) EqualXMLStructureTest::testFailureWithDifferentChildrenCount
Number of child nodes of "foo" differs
Failed asserting that 1 matches expected 3.

/home/sb/EqualXMLStructureTest.php:35

4) EqualXMLStructureTest::testFailureWithDifferentChildren
Failed asserting that two strings are equal.
--- Expected
+++ Actual
@@ @@
-'bar'
+'baz'

/home/sb/EqualXMLStructureTest.php:48

12.16. assertEqualXMLStructure() 97

PHPUnit Manual, Release latest

FAILURES!
Tests: 4, Assertions: 8, Failures: 4.

12.17 assertEquals()

assertEquals(mixed $expected, mixed $actual[, string $message = ''])

Reports an error identified by $message if the two variables $expected and $actual are not equal.

assertNotEquals() is the inverse of this assertion and takes the same arguments.

Example 12.16: Usage of assertEquals()

<?php
use PHPUnit\Framework\TestCase;

class EqualsTest extends TestCase
{

public function testFailure()
{

$this->assertEquals(1, 0);
}

public function testFailure2()
{

$this->assertEquals('bar', 'baz');
}

public function testFailure3()
{

$this->assertEquals("foo\nbar\nbaz\n", "foo\nbah\nbaz\n");
}

}

$ phpunit EqualsTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

FFF

Time: 0 seconds, Memory: 5.25Mb

There were 3 failures:

1) EqualsTest::testFailure
Failed asserting that 0 matches expected 1.

/home/sb/EqualsTest.php:6

2) EqualsTest::testFailure2
Failed asserting that two strings are equal.
--- Expected
+++ Actual
@@ @@
-'bar'
+'baz'

98 Chapter 12. Assertions

PHPUnit Manual, Release latest

/home/sb/EqualsTest.php:11

3) EqualsTest::testFailure3
Failed asserting that two strings are equal.
--- Expected
+++ Actual
@@ @@
'foo

-bar
+bah
baz
'

/home/sb/EqualsTest.php:16

FAILURES!
Tests: 3, Assertions: 3, Failures: 3.

More specialized comparisons are used for specific argument types for $expected and $actual, see below.

assertEquals(DOMDocument $expected, DOMDocument $actual[, string $message =
''])

Reports an error identified by $message if the uncommented canonical form of the XML documents represented by
the two DOMDocument objects $expected and $actual are not equal.

Example 12.17: Usage of assertEquals() with DOMDocument objects

<?php
use PHPUnit\Framework\TestCase;

class EqualsTest extends TestCase
{

public function testFailure()
{

$expected = new DOMDocument;
$expected->loadXML('<foo><bar/></foo>');

$actual = new DOMDocument;
$actual->loadXML('<bar><foo/></bar>');

$this->assertEquals($expected, $actual);
}

}

$ phpunit EqualsTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) EqualsTest::testFailure
Failed asserting that two DOM documents are equal.

12.17. assertEquals() 99

PHPUnit Manual, Release latest

--- Expected
+++ Actual
@@ @@
<?xml version="1.0"?>

-<foo>
- <bar/>
-</foo>
+<bar>
+ <foo/>
+</bar>

/home/sb/EqualsTest.php:12

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertEquals(object $expected, object $actual[, string $message = ''])

Reports an error identified by $message if the two objects $expected and $actual do not have equal attribute
values.

Example 12.18: Usage of assertEquals() with objects

<?php
use PHPUnit\Framework\TestCase;

class EqualsTest extends TestCase
{

public function testFailure()
{

$expected = new stdClass;
$expected->foo = 'foo';
$expected->bar = 'bar';

$actual = new stdClass;
$actual->foo = 'bar';
$actual->baz = 'bar';

$this->assertEquals($expected, $actual);
}

}

$ phpunit EqualsTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

1) EqualsTest::testFailure
Failed asserting that two objects are equal.
--- Expected
+++ Actual
@@ @@
stdClass Object (

100 Chapter 12. Assertions

PHPUnit Manual, Release latest

- 'foo' => 'foo'
- 'bar' => 'bar'
+ 'foo' => 'bar'
+ 'baz' => 'bar'
)

/home/sb/EqualsTest.php:14

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertEquals(array $expected, array $actual[, string $message = ''])

Reports an error identified by $message if the two arrays $expected and $actual are not equal.

Example 12.19: Usage of assertEquals() with arrays

<?php
use PHPUnit\Framework\TestCase;

class EqualsTest extends TestCase
{

public function testFailure()
{

$this->assertEquals(['a', 'b', 'c'], ['a', 'c', 'd']);
}

}

$ phpunit EqualsTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

1) EqualsTest::testFailure
Failed asserting that two arrays are equal.
--- Expected
+++ Actual
@@ @@
Array (

0 => 'a'
- 1 => 'b'
- 2 => 'c'
+ 1 => 'c'
+ 2 => 'd'
)

/home/sb/EqualsTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.17. assertEquals() 101

PHPUnit Manual, Release latest

12.18 assertEqualsCanonicalizing()

assertEqualsCanonicalizing(mixed $expected, mixed $actual[, string $message =
''])

Reports an error identified by $message if the two variables $expected and $actual are not equal.

The contents of $expected and $actual are canonicalized before they are compared. For instance, when the
two variables $expected and $actual are arrays, then these arrays are sorted before they are compared. When
$expected‘ and $actual are objects, each object is converted to an array containing all private, protected and public
attributes.

assertNotEqualsCanonicalizing() is the inverse of this assertion and takes the same arguments.

Example 12.20: Usage of assertEqualsCanonicalizing()

<?php declare(strict_types=1);
use PHPUnit\Framework\TestCase;

final class EqualsCanonicalizingTest extends TestCase
{

public function testFailure()
{

$this->assertEqualsCanonicalizing([3, 2, 1], [2, 3, 0, 1]);
}

}

$ phpunit EqualsCanonicalizingTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F 1 / 1 (100
→˓%)

Time: 42 ms, Memory: 6.00 MB

There was 1 failure:

1) EqualsCanonicalizingTest::testFailure
Failed asserting that two arrays are equal.
--- Expected
+++ Actual
@@ @@
Array (

- 0 => 1
- 1 => 2
- 2 => 3
+ 0 => 0
+ 1 => 1
+ 2 => 2
+ 3 => 3
)

/home/sb/EqualsCanonicalizingTest.php:8

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

102 Chapter 12. Assertions

PHPUnit Manual, Release latest

12.19 assertEqualsIgnoringCase()

assertEqualsIgnoringCase(mixed $expected, mixed $actual[, string $message =
''])

Reports an error identified by $message if the two variables $expected and $actual are not equal.

Differences in casing are ignored for the comparison of $expected and $actual.

assertNotEqualsIgnoringCase() is the inverse of this assertion and takes the same arguments.

Example 12.21: Usage of assertEqualsIgnoringCase()

<?php declare(strict_types=1);
use PHPUnit\Framework\TestCase;

final class EqualsIgnoringCaseTest extends TestCase
{

public function testFailure()
{

$this->assertEqualsIgnoringCase('foo', 'BAR');
}

}

$ phpunit EqualsIgnoringCaseTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F 1 / 1 (100
→˓%)

Time: 51 ms, Memory: 6.00 MB

There was 1 failure:

1) EqualsIgnoringCaseTest::testFailure
Failed asserting that two strings are equal.
--- Expected
+++ Actual
@@ @@
-'foo'
+'BAR'

/home/sb/EqualsIgnoringCaseTest.php:8

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.20 assertEqualsWithDelta()

assertEqualsWithDelta(mixed $expected, mixed $actual, float $delta[, string
$message = ''])

Reports an error identified by $message if the absolute difference between $expected and $actual is greater
than $delta.

12.19. assertEqualsIgnoringCase() 103

PHPUnit Manual, Release latest

Please read “What Every Computer Scientist Should Know About Floating-Point Arithmetic” to understand why
$delta is necessary.

assertNotEqualsWithDelta() is the inverse of this assertion and takes the same arguments.

Example 12.22: Usage of assertEqualsWithDelta()

<?php declare(strict_types=1);
use PHPUnit\Framework\TestCase;

final class EqualsWithDeltaTest extends TestCase
{

public function testFailure()
{

$this->assertEqualsWithDelta(1.0, 1.5, 0.1);
}

}

$ phpunit EqualsWithDeltaTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F 1 / 1 (100
→˓%)

Time: 41 ms, Memory: 6.00 MB

There was 1 failure:

1) EqualsWithDeltaTest::testFailure
Failed asserting that 1.5 matches expected 1.0.

/home/sb/EqualsWithDeltaTest.php:8

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.21 assertFalse()

assertFalse(bool $condition[, string $message = ''])

Reports an error identified by $message if $condition is true.

assertNotFalse() is the inverse of this assertion and takes the same arguments.

Example 12.23: Usage of assertFalse()

<?php
use PHPUnit\Framework\TestCase;

class FalseTest extends TestCase
{

public function testFailure()
{

$this->assertFalse(true);
}

}

104 Chapter 12. Assertions

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

PHPUnit Manual, Release latest

$ phpunit FalseTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) FalseTest::testFailure
Failed asserting that true is false.

/home/sb/FalseTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.22 assertFileEquals()

assertFileEquals(string $expected, string $actual[, string $message = ''])

Reports an error identified by $message if the file specified by $expected does not have the same contents as the
file specified by $actual.

assertFileNotEquals() is the inverse of this assertion and takes the same arguments.

Example 12.24: Usage of assertFileEquals()

<?php
use PHPUnit\Framework\TestCase;

class FileEqualsTest extends TestCase
{

public function testFailure()
{

$this->assertFileEquals('/home/sb/expected', '/home/sb/actual');
}

}

$ phpunit FileEqualsTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

1) FileEqualsTest::testFailure
Failed asserting that two strings are equal.
--- Expected
+++ Actual
@@ @@
-'expected
+'actual

12.22. assertFileEquals() 105

PHPUnit Manual, Release latest

'

/home/sb/FileEqualsTest.php:6

FAILURES!
Tests: 1, Assertions: 3, Failures: 1.

12.23 assertFileExists()

assertFileExists(string $filename[, string $message = ''])

Reports an error identified by $message if the file specified by $filename does not exist.

assertFileNotExists() is the inverse of this assertion and takes the same arguments.

Example 12.25: Usage of assertFileExists()

<?php
use PHPUnit\Framework\TestCase;

class FileExistsTest extends TestCase
{

public function testFailure()
{

$this->assertFileExists('/path/to/file');
}

}

$ phpunit FileExistsTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) FileExistsTest::testFailure
Failed asserting that file "/path/to/file" exists.

/home/sb/FileExistsTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.24 assertFileIsReadable()

assertFileIsReadable(string $filename[, string $message = ''])

Reports an error identified by $message if the file specified by $filename is not a file or is not readable.

assertFileNotIsReadable() is the inverse of this assertion and takes the same arguments.

106 Chapter 12. Assertions

PHPUnit Manual, Release latest

Example 12.26: Usage of assertFileIsReadable()

<?php
use PHPUnit\Framework\TestCase;

class FileIsReadableTest extends TestCase
{

public function testFailure()
{

$this->assertFileIsReadable('/path/to/file');
}

}

$ phpunit FileIsReadableTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) FileIsReadableTest::testFailure
Failed asserting that "/path/to/file" is readable.

/home/sb/FileIsReadableTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.25 assertFileIsWritable()

assertFileIsWritable(string $filename[, string $message = ''])

Reports an error identified by $message if the file specified by $filename is not a file or is not writable.

assertFileNotIsWritable() is the inverse of this assertion and takes the same arguments.

Example 12.27: Usage of assertFileIsWritable()

<?php
use PHPUnit\Framework\TestCase;

class FileIsWritableTest extends TestCase
{

public function testFailure()
{

$this->assertFileIsWritable('/path/to/file');
}

}

$ phpunit FileIsWritableTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

12.25. assertFileIsWritable() 107

PHPUnit Manual, Release latest

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) FileIsWritableTest::testFailure
Failed asserting that "/path/to/file" is writable.

/home/sb/FileIsWritableTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.26 assertGreaterThan()

assertGreaterThan(mixed $expected, mixed $actual[, string $message = ''])

Reports an error identified by $message if the value of $actual is not greater than the value of $expected.

Example 12.28: Usage of assertGreaterThan()

<?php
use PHPUnit\Framework\TestCase;

class GreaterThanTest extends TestCase
{

public function testFailure()
{

$this->assertGreaterThan(2, 1);
}

}

$ phpunit GreaterThanTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) GreaterThanTest::testFailure
Failed asserting that 1 is greater than 2.

/home/sb/GreaterThanTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.27 assertGreaterThanOrEqual()

assertGreaterThanOrEqual(mixed $expected, mixed $actual[, string $message =
''])

108 Chapter 12. Assertions

PHPUnit Manual, Release latest

Reports an error identified by $message if the value of $actual is not greater than or equal to the value of
$expected.

Example 12.29: Usage of assertGreaterThanOrEqual()

<?php
use PHPUnit\Framework\TestCase;

class GreatThanOrEqualTest extends TestCase
{

public function testFailure()
{

$this->assertGreaterThanOrEqual(2, 1);
}

}
?>

$ phpunit GreaterThanOrEqualTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

1) GreatThanOrEqualTest::testFailure
Failed asserting that 1 is equal to 2 or is greater than 2.

/home/sb/GreaterThanOrEqualTest.php:6

FAILURES!
Tests: 1, Assertions: 2, Failures: 1.

12.28 assertInfinite()

assertInfinite(mixed $variable[, string $message = ''])

Reports an error identified by $message if $variable is not INF.

assertFinite() is the inverse of this assertion and takes the same arguments.

Example 12.30: Usage of assertInfinite()

<?php
use PHPUnit\Framework\TestCase;

class InfiniteTest extends TestCase
{

public function testFailure()
{

$this->assertInfinite(1);
}

}
?>

12.28. assertInfinite() 109

PHPUnit Manual, Release latest

$ phpunit InfiniteTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) InfiniteTest::testFailure
Failed asserting that 1 is infinite.

/home/sb/InfiniteTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.29 assertInstanceOf()

assertInstanceOf($expected, $actual[, $message = ''])

Reports an error identified by $message if $actual is not an instance of $expected.

assertNotInstanceOf() is the inverse of this assertion and takes the same arguments.

Example 12.31: Usage of assertInstanceOf()

<?php
use PHPUnit\Framework\TestCase;

class InstanceOfTest extends TestCase
{

public function testFailure()
{

$this->assertInstanceOf(RuntimeException::class, new Exception);
}

}
?>

$ phpunit InstanceOfTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) InstanceOfTest::testFailure
Failed asserting that Exception Object (...) is an instance of class

→˓"RuntimeException".

/home/sb/InstanceOfTest.php:6

FAILURES!

110 Chapter 12. Assertions

PHPUnit Manual, Release latest

Tests: 1, Assertions: 1, Failures: 1.

12.30 assertIsArray()

assertIsArray($actual[, $message = ''])

Reports an error identified by $message if $actual is not of type array.

assertIsNotArray() is the inverse of this assertion and takes the same arguments.

Example 12.32: Usage of assertIsArray()

<?php
use PHPUnit\Framework\TestCase;

class ArrayTest extends TestCase
{

public function testFailure()
{

$this->assertIsArray(null);
}

}

$ phpunit ArrayTest
PHPUnit |version|.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) ArrayTest::testFailure
Failed asserting that null is of type "array".

/home/sb/ArrayTest.php:8

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.31 assertIsBool()

assertIsBool($actual[, $message = ''])

Reports an error identified by $message if $actual is not of type bool.

assertIsNotBool() is the inverse of this assertion and takes the same arguments.

Example 12.33: Usage of assertIsBool()

<?php
use PHPUnit\Framework\TestCase;

class BoolTest extends TestCase
{

12.30. assertIsArray() 111

PHPUnit Manual, Release latest

public function testFailure()
{

$this->assertIsBool(null);
}

}

$ phpunit BoolTest
PHPUnit |version|.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) BoolTest::testFailure
Failed asserting that null is of type "bool".

/home/sb/BoolTest.php:8

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.32 assertIsCallable()

assertIsCallable($actual[, $message = ''])

Reports an error identified by $message if $actual is not of type callable.

assertIsNotCallable() is the inverse of this assertion and takes the same arguments.

Example 12.34: Usage of assertIsCallable()

<?php
use PHPUnit\Framework\TestCase;

class CallableTest extends TestCase
{

public function testFailure()
{

$this->assertIsCallable(null);
}

}

$ phpunit CallableTest
PHPUnit |version|.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) CallableTest::testFailure
Failed asserting that null is of type "callable".

112 Chapter 12. Assertions

PHPUnit Manual, Release latest

/home/sb/CallableTest.php:8

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.33 assertIsFloat()

assertIsFloat($actual[, $message = ''])

Reports an error identified by $message if $actual is not of type float.

assertIsNotFloat() is the inverse of this assertion and takes the same arguments.

Example 12.35: Usage of assertIsFloat()

<?php
use PHPUnit\Framework\TestCase;

class FloatTest extends TestCase
{

public function testFailure()
{

$this->assertIsFloat(null);
}

}

$ phpunit FloatTest
PHPUnit |version|.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) FloatTest::testFailure
Failed asserting that null is of type "float".

/home/sb/FloatTest.php:8

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.34 assertIsInt()

assertIsInt($actual[, $message = ''])

Reports an error identified by $message if $actual is not of type int.

assertIsNotInt() is the inverse of this assertion and takes the same arguments.

12.33. assertIsFloat() 113

PHPUnit Manual, Release latest

Example 12.36: Usage of assertIsInt()

<?php
use PHPUnit\Framework\TestCase;

class IntTest extends TestCase
{

public function testFailure()
{

$this->assertIsInt(null);
}

}

$ phpunit IntTest
PHPUnit |version|.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) IntTest::testFailure
Failed asserting that null is of type "int".

/home/sb/IntTest.php:8

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.35 assertIsIterable()

assertIsIterable($actual[, $message = ''])

Reports an error identified by $message if $actual is not of type iterable.

assertIsNotIterable() is the inverse of this assertion and takes the same arguments.

Example 12.37: Usage of assertIsIterable()

<?php
use PHPUnit\Framework\TestCase;

class IterableTest extends TestCase
{

public function testFailure()
{

$this->assertIsIterable(null);
}

}

$ phpunit IterableTest
PHPUnit |version|.0 by Sebastian Bergmann and contributors.

F

114 Chapter 12. Assertions

PHPUnit Manual, Release latest

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) IterableTest::testFailure
Failed asserting that null is of type "iterable".

/home/sb/IterableTest.php:8

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.36 assertIsNumeric()

assertIsNumeric($actual[, $message = ''])

Reports an error identified by $message if $actual is not of type numeric.

assertIsNotNumeric() is the inverse of this assertion and takes the same arguments.

Example 12.38: Usage of assertIsNumeric()

<?php
use PHPUnit\Framework\TestCase;

class NumericTest extends TestCase
{

public function testFailure()
{

$this->assertIsNumeric(null);
}

}

$ phpunit NumericTest
PHPUnit |version|.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) NumericTest::testFailure
Failed asserting that null is of type "numeric".

/home/sb/NumericTest.php:8

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.37 assertIsObject()

assertIsObject($actual[, $message = ''])

12.36. assertIsNumeric() 115

PHPUnit Manual, Release latest

Reports an error identified by $message if $actual is not of type object.

assertIsNotObject() is the inverse of this assertion and takes the same arguments.

Example 12.39: Usage of assertIsObject()

<?php
use PHPUnit\Framework\TestCase;

class ObjectTest extends TestCase
{

public function testFailure()
{

$this->assertIsObject(null);
}

}

$ phpunit ObjectTest
PHPUnit |version|.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) ObjectTest::testFailure
Failed asserting that null is of type "object".

/home/sb/ObjectTest.php:8

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.38 assertIsResource()

assertIsResource($actual[, $message = ''])

Reports an error identified by $message if $actual is not of type resource.

assertIsNotResource() is the inverse of this assertion and takes the same arguments.

Example 12.40: Usage of assertIsResource()

<?php
use PHPUnit\Framework\TestCase;

class ResourceTest extends TestCase
{

public function testFailure()
{

$this->assertIsResource(null);
}

}

$ phpunit ResourceTest
PHPUnit |version|.0 by Sebastian Bergmann and contributors.

116 Chapter 12. Assertions

PHPUnit Manual, Release latest

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) ResourceTest::testFailure
Failed asserting that null is of type "resource".

/home/sb/ResourceTest.php:8

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.39 assertIsScalar()

assertIsScalar($actual[, $message = ''])

Reports an error identified by $message if $actual is not of type scalar.

assertIsNotScalar() is the inverse of this assertion and takes the same arguments.

Example 12.41: Usage of assertIsScalar()

<?php
use PHPUnit\Framework\TestCase;

class ScalarTest extends TestCase
{

public function testFailure()
{

$this->assertIsScalar(null);
}

}

$ phpunit ScalarTest
PHPUnit |version|.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) ScalarTest::testFailure
Failed asserting that null is of type "scalar".

/home/sb/ScalarTest.php:8

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.39. assertIsScalar() 117

PHPUnit Manual, Release latest

12.40 assertIsString()

assertIsString($actual[, $message = ''])

Reports an error identified by $message if $actual is not of type string.

assertIsNotString() is the inverse of this assertion and takes the same arguments.

Example 12.42: Usage of assertIsString()

<?php
use PHPUnit\Framework\TestCase;

class StringTest extends TestCase
{

public function testFailure()
{

$this->assertIsString(null);
}

}

$ phpunit StringTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) StringTest::testFailure
Failed asserting that null is of type "string".

/home/sb/StringTest.php:8

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.41 assertIsReadable()

assertIsReadable(string $filename[, string $message = ''])

Reports an error identified by $message if the file or directory specified by $filename is not readable.

assertNotIsReadable() is the inverse of this assertion and takes the same arguments.

Example 12.43: Usage of assertIsReadable()

<?php
use PHPUnit\Framework\TestCase;

class IsReadableTest extends TestCase
{

public function testFailure()
{

$this->assertIsReadable('/path/to/unreadable');

118 Chapter 12. Assertions

PHPUnit Manual, Release latest

}
}
?>

$ phpunit IsReadableTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) IsReadableTest::testFailure
Failed asserting that "/path/to/unreadable" is readable.

/home/sb/IsReadableTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.42 assertIsWritable()

assertIsWritable(string $filename[, string $message = ''])

Reports an error identified by $message if the file or directory specified by $filename is not writable.

assertNotIsWritable() is the inverse of this assertion and takes the same arguments.

Example 12.44: Usage of assertIsWritable()

<?php
use PHPUnit\Framework\TestCase;

class IsWritableTest extends TestCase
{

public function testFailure()
{

$this->assertIsWritable('/path/to/unwritable');
}

}
?>

$ phpunit IsWritableTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) IsWritableTest::testFailure
Failed asserting that "/path/to/unwritable" is writable.

12.42. assertIsWritable() 119

PHPUnit Manual, Release latest

/home/sb/IsWritableTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.43 assertJsonFileEqualsJsonFile()

assertJsonFileEqualsJsonFile(mixed $expectedFile, mixed $actualFile[, string
$message = ''])

Reports an error identified by $message if the value of $actualFile does not match the value of
$expectedFile.

Example 12.45: Usage of assertJsonFileEqualsJsonFile()

<?php
use PHPUnit\Framework\TestCase;

class JsonFileEqualsJsonFileTest extends TestCase
{

public function testFailure()
{

$this->assertJsonFileEqualsJsonFile(
'path/to/fixture/file', 'path/to/actual/file');

}
}
?>

$ phpunit JsonFileEqualsJsonFileTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) JsonFileEqualsJsonFile::testFailure
Failed asserting that '{"Mascot":"Tux"}' matches JSON string "["Mascott",

→˓"Tux", "OS", "Linux"]".

/home/sb/JsonFileEqualsJsonFileTest.php:5

FAILURES!
Tests: 1, Assertions: 3, Failures: 1.

12.44 assertJsonStringEqualsJsonFile()

assertJsonStringEqualsJsonFile(mixed $expectedFile, mixed $actualJson[, string
$message = ''])

120 Chapter 12. Assertions

PHPUnit Manual, Release latest

Reports an error identified by $message if the value of $actualJson does not match the value of
$expectedFile.

Example 12.46: Usage of assertJsonStringEqualsJsonFile()

<?php
use PHPUnit\Framework\TestCase;

class JsonStringEqualsJsonFileTest extends TestCase
{

public function testFailure()
{

$this->assertJsonStringEqualsJsonFile(
'path/to/fixture/file', json_encode(['Mascot' => 'ux'])

);
}

}
?>

$ phpunit JsonStringEqualsJsonFileTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) JsonStringEqualsJsonFile::testFailure
Failed asserting that '{"Mascot":"ux"}' matches JSON string "{"Mascott":"Tux"}

→˓".

/home/sb/JsonStringEqualsJsonFileTest.php:5

FAILURES!
Tests: 1, Assertions: 3, Failures: 1.

12.45 assertJsonStringEqualsJsonString()

assertJsonStringEqualsJsonString(mixed $expectedJson, mixed $actualJson[,
string $message = ''])

Reports an error identified by $message if the value of $actualJson does not match the value of
$expectedJson.

Example 12.47: Usage of assertJsonStringEqualsJsonString()

<?php
use PHPUnit\Framework\TestCase;

class JsonStringEqualsJsonStringTest extends TestCase
{

public function testFailure()
{

$this->assertJsonStringEqualsJsonString(

12.45. assertJsonStringEqualsJsonString() 121

PHPUnit Manual, Release latest

json_encode(['Mascot' => 'Tux']),
json_encode(['Mascot' => 'ux'])

);
}

}
?>

$ phpunit JsonStringEqualsJsonStringTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) JsonStringEqualsJsonStringTest::testFailure
Failed asserting that two objects are equal.
--- Expected
+++ Actual
@@ @@
stdClass Object (
- 'Mascot' => 'Tux'
+ 'Mascot' => 'ux'

)

/home/sb/JsonStringEqualsJsonStringTest.php:5

FAILURES!
Tests: 1, Assertions: 3, Failures: 1.

12.46 assertLessThan()

assertLessThan(mixed $expected, mixed $actual[, string $message = ''])

Reports an error identified by $message if the value of $actual is not less than the value of $expected.

Example 12.48: Usage of assertLessThan()

<?php
use PHPUnit\Framework\TestCase;

class LessThanTest extends TestCase
{

public function testFailure()
{

$this->assertLessThan(1, 2);
}

}
?>

$ phpunit LessThanTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

122 Chapter 12. Assertions

PHPUnit Manual, Release latest

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) LessThanTest::testFailure
Failed asserting that 2 is less than 1.

/home/sb/LessThanTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.47 assertLessThanOrEqual()

assertLessThanOrEqual(mixed $expected, mixed $actual[, string $message = ''])

Reports an error identified by $message if the value of $actual is not less than or equal to the value of
$expected.

Example 12.49: Usage of assertLessThanOrEqual()

<?php
use PHPUnit\Framework\TestCase;

class LessThanOrEqualTest extends TestCase
{

public function testFailure()
{

$this->assertLessThanOrEqual(1, 2);
}

}
?>

$ phpunit LessThanOrEqualTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

1) LessThanOrEqualTest::testFailure
Failed asserting that 2 is equal to 1 or is less than 1.

/home/sb/LessThanOrEqualTest.php:6

FAILURES!
Tests: 1, Assertions: 2, Failures: 1.

12.47. assertLessThanOrEqual() 123

PHPUnit Manual, Release latest

12.48 assertNan()

assertNan(mixed $variable[, string $message = ''])

Reports an error identified by $message if $variable is not NAN.

Example 12.50: Usage of assertNan()

<?php
use PHPUnit\Framework\TestCase;

class NanTest extends TestCase
{

public function testFailure()
{

$this->assertNan(1);
}

}
?>

$ phpunit NanTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) NanTest::testFailure
Failed asserting that 1 is nan.

/home/sb/NanTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.49 assertNull()

assertNull(mixed $variable[, string $message = ''])

Reports an error identified by $message if $variable is not null.

assertNotNull() is the inverse of this assertion and takes the same arguments.

Example 12.51: Usage of assertNull()

<?php
use PHPUnit\Framework\TestCase;

class NullTest extends TestCase
{

public function testFailure()
{

$this->assertNull('foo');
}

124 Chapter 12. Assertions

PHPUnit Manual, Release latest

}
?>

$ phpunit NotNullTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) NullTest::testFailure
Failed asserting that 'foo' is null.

/home/sb/NotNullTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.50 assertObjectHasAttribute()

assertObjectHasAttribute(string $attributeName, object $object[, string
$message = ''])

Reports an error identified by $message if $object->attributeName does not exist.

assertObjectNotHasAttribute() is the inverse of this assertion and takes the same arguments.

Example 12.52: Usage of assertObjectHasAttribute()

<?php
use PHPUnit\Framework\TestCase;

class ObjectHasAttributeTest extends TestCase
{

public function testFailure()
{

$this->assertObjectHasAttribute('foo', new stdClass);
}

}
?>

$ phpunit ObjectHasAttributeTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) ObjectHasAttributeTest::testFailure
Failed asserting that object of class "stdClass" has attribute "foo".

12.50. assertObjectHasAttribute() 125

PHPUnit Manual, Release latest

/home/sb/ObjectHasAttributeTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.51 assertRegExp()

assertRegExp(string $pattern, string $string[, string $message = ''])

Reports an error identified by $message if $string does not match the regular expression $pattern.

assertNotRegExp() is the inverse of this assertion and takes the same arguments.

Example 12.53: Usage of assertRegExp()

<?php
use PHPUnit\Framework\TestCase;

class RegExpTest extends TestCase
{

public function testFailure()
{

$this->assertRegExp('/foo/', 'bar');
}

}
?>

$ phpunit RegExpTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) RegExpTest::testFailure
Failed asserting that 'bar' matches PCRE pattern "/foo/".

/home/sb/RegExpTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.52 assertStringMatchesFormat()

assertStringMatchesFormat(string $format, string $string[, string $message =
''])

Reports an error identified by $message if the $string does not match the $format string.

assertStringNotMatchesFormat() is the inverse of this assertion and takes the same arguments.

126 Chapter 12. Assertions

PHPUnit Manual, Release latest

Example 12.54: Usage of assertStringMatchesFormat()

<?php
use PHPUnit\Framework\TestCase;

class StringMatchesFormatTest extends TestCase
{

public function testFailure()
{

$this->assertStringMatchesFormat('%i', 'foo');
}

}
?>

$ phpunit StringMatchesFormatTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) StringMatchesFormatTest::testFailure
Failed asserting that 'foo' matches PCRE pattern "/^[+-]?d+$/s".

/home/sb/StringMatchesFormatTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

The format string may contain the following placeholders:

• %e: Represents a directory separator, for example / on Linux.

• %s: One or more of anything (character or white space) except the end of line character.

• %S: Zero or more of anything (character or white space) except the end of line character.

• %a: One or more of anything (character or white space) including the end of line character.

• %A: Zero or more of anything (character or white space) including the end of line character.

• %w: Zero or more white space characters.

• %i: A signed integer value, for example +3142, -3142.

• %d: An unsigned integer value, for example 123456.

• %x: One or more hexadecimal character. That is, characters in the range 0-9, a-f, A-F.

• %f: A floating point number, for example: 3.142, -3.142, 3.142E-10, 3.142e+10.

• %c: A single character of any sort.

• %%: A literal percent character: %.

12.52. assertStringMatchesFormat() 127

PHPUnit Manual, Release latest

12.53 assertStringMatchesFormatFile()

assertStringMatchesFormatFile(string $formatFile, string $string[, string
$message = ''])

Reports an error identified by $message if the $string does not match the contents of the $formatFile.

assertStringNotMatchesFormatFile() is the inverse of this assertion and takes the same arguments.

Example 12.55: Usage of assertStringMatchesFormatFile()

<?php
use PHPUnit\Framework\TestCase;

class StringMatchesFormatFileTest extends TestCase
{

public function testFailure()
{

$this->assertStringMatchesFormatFile('/path/to/expected.txt', 'foo');
}

}
?>

$ phpunit StringMatchesFormatFileTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) StringMatchesFormatFileTest::testFailure
Failed asserting that 'foo' matches PCRE pattern "/^[+-]?d+
$/s".

/home/sb/StringMatchesFormatFileTest.php:6

FAILURES!
Tests: 1, Assertions: 2, Failures: 1.

12.54 assertSame()

assertSame(mixed $expected, mixed $actual[, string $message = ''])

Reports an error identified by $message if the two variables $expected and $actual do not have the same type
and value.

assertNotSame() is the inverse of this assertion and takes the same arguments.

Example 12.56: Usage of assertSame()

<?php
use PHPUnit\Framework\TestCase;

class SameTest extends TestCase

128 Chapter 12. Assertions

PHPUnit Manual, Release latest

{
public function testFailure()
{

$this->assertSame('2204', 2204);
}

}
?>

$ phpunit SameTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) SameTest::testFailure
Failed asserting that 2204 is identical to '2204'.

/home/sb/SameTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

assertSame(object $expected, object $actual[, string $message = ''])

Reports an error identified by $message if the two variables $expected and $actual do not reference the same
object.

Example 12.57: Usage of assertSame() with objects

<?php
use PHPUnit\Framework\TestCase;

class SameTest extends TestCase
{

public function testFailure()
{

$this->assertSame(new stdClass, new stdClass);
}

}
?>

$ phpunit SameTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 4.75Mb

There was 1 failure:

1) SameTest::testFailure
Failed asserting that two variables reference the same object.

12.54. assertSame() 129

PHPUnit Manual, Release latest

/home/sb/SameTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.55 assertStringEndsWith()

assertStringEndsWith(string $suffix, string $string[, string $message = ''])

Reports an error identified by $message if the $string does not end with $suffix.

assertStringEndsNotWith() is the inverse of this assertion and takes the same arguments.

Example 12.58: Usage of assertStringEndsWith()

<?php
use PHPUnit\Framework\TestCase;

class StringEndsWithTest extends TestCase
{

public function testFailure()
{

$this->assertStringEndsWith('suffix', 'foo');
}

}
?>

$ phpunit StringEndsWithTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 1 second, Memory: 5.00Mb

There was 1 failure:

1) StringEndsWithTest::testFailure
Failed asserting that 'foo' ends with "suffix".

/home/sb/StringEndsWithTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.56 assertStringEqualsFile()

assertStringEqualsFile(string $expectedFile, string $actualString[, string
$message = ''])

Reports an error identified by $message if the file specified by $expectedFile does not have $actualString
as its contents.

assertStringNotEqualsFile() is the inverse of this assertion and takes the same arguments.

130 Chapter 12. Assertions

PHPUnit Manual, Release latest

Example 12.59: Usage of assertStringEqualsFile()

<?php
use PHPUnit\Framework\TestCase;

class StringEqualsFileTest extends TestCase
{

public function testFailure()
{

$this->assertStringEqualsFile('/home/sb/expected', 'actual');
}

}
?>

$ phpunit StringEqualsFileTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

1) StringEqualsFileTest::testFailure
Failed asserting that two strings are equal.
--- Expected
+++ Actual
@@ @@
-'expected
-'
+'actual'

/home/sb/StringEqualsFileTest.php:6

FAILURES!
Tests: 1, Assertions: 2, Failures: 1.

12.57 assertStringStartsWith()

assertStringStartsWith(string $prefix, string $string[, string $message = ''])

Reports an error identified by $message if the $string does not start with $prefix.

assertStringStartsNotWith() is the inverse of this assertion and takes the same arguments.

Example 12.60: Usage of assertStringStartsWith()

<?php
use PHPUnit\Framework\TestCase;

class StringStartsWithTest extends TestCase
{

public function testFailure()
{

$this->assertStringStartsWith('prefix', 'foo');

12.57. assertStringStartsWith() 131

PHPUnit Manual, Release latest

}
}
?>

$ phpunit StringStartsWithTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) StringStartsWithTest::testFailure
Failed asserting that 'foo' starts with "prefix".

/home/sb/StringStartsWithTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.58 assertThat()

More complex assertions can be formulated using the PHPUnit\Framework\Constraint classes. They can be
evaluated using the assertThat() method. Example 12.61 shows how the logicalNot() and equalTo()
constraints can be used to express the same assertion as assertNotEquals().

assertThat(mixed $value, PHPUnit\Framework\Constraint $constraint[, $message =
''])

Reports an error identified by $message if the $value does not match the $constraint.

Example 12.61: Usage of assertThat()

<?php
use PHPUnit\Framework\TestCase;

class BiscuitTest extends TestCase
{

public function testEquals()
{

$theBiscuit = new Biscuit('Ginger');
$myBiscuit = new Biscuit('Ginger');

$this->assertThat(
$theBiscuit,
$this->logicalNot(
$this->equalTo($myBiscuit)

)
);

}
}
?>

Table 12.1 shows the available PHPUnit\Framework\Constraint classes.

132 Chapter 12. Assertions

PHPUnit Manual, Release latest

Table 12.1: Constraints
Constraint Meaning
PHPUnit\Framework\Constraint\Attribute attribute(PHPUnit\Framework\Constraint $constraint, $attributeName) Constraint that applies another constraint to an attribute of a class or an object.
PHPUnit\Framework\Constraint\IsAnything anything() Constraint that accepts any input value.
PHPUnit\Framework\Constraint\ArrayHasKey arrayHasKey(mixed $key) Constraint that asserts that the array has a given key.
PHPUnit\Framework\Constraint\TraversableContains contains(mixed $value) Constraint that asserts that the array or object that implements the Iterator interface contains a given value.
PHPUnit\Framework\Constraint\TraversableContainsOnly containsOnly(string $type) Constraint that asserts that the array or object that implements the Iterator interface contains only values of a given type.
PHPUnit\Framework\Constraint\TraversableContainsOnly containsOnlyInstancesOf(string $classname) Constraint that asserts that the array or object that implements the Iterator interface contains only instances of a given classname.
PHPUnit\Framework\Constraint\IsEqual equalTo($value, $delta = 0, $maxDepth = 10) Constraint that checks if one value is equal to another.
PHPUnit\Framework\Constraint\Attribute attributeEqualTo($attributeName, $value, $delta = 0, $maxDepth = 10) Constraint that checks if a value is equal to an attribute of a class or of an object.
PHPUnit\Framework\Constraint\DirectoryExists directoryExists() Constraint that checks if the directory exists.
PHPUnit\Framework\Constraint\FileExists fileExists() Constraint that checks if the file(name) exists.
PHPUnit\Framework\Constraint\IsReadable isReadable() Constraint that checks if the file(name) is readable.
PHPUnit\Framework\Constraint\IsWritable isWritable() Constraint that checks if the file(name) is writable.
PHPUnit\Framework\Constraint\GreaterThan greaterThan(mixed $value) Constraint that asserts that the value is greater than a given value.
PHPUnit\Framework\Constraint\Or greaterThanOrEqual(mixed $value) Constraint that asserts that the value is greater than or equal to a given value.
PHPUnit\Framework\Constraint\ClassHasAttribute classHasAttribute(string $attributeName) Constraint that asserts that the class has a given attribute.
PHPUnit\Framework\Constraint\ClassHasStaticAttribute classHasStaticAttribute(string $attributeName) Constraint that asserts that the class has a given static attribute.
PHPUnit\Framework\Constraint\ObjectHasAttribute objectHasAttribute(string $attributeName) Constraint that asserts that the object has a given attribute.
PHPUnit\Framework\Constraint\IsIdentical identicalTo(mixed $value) Constraint that asserts that one value is identical to another.
PHPUnit\Framework\Constraint\IsFalse isFalse() Constraint that asserts that the value is false.
PHPUnit\Framework\Constraint\IsInstanceOf isInstanceOf(string $className) Constraint that asserts that the object is an instance of a given class.
PHPUnit\Framework\Constraint\IsNull isNull() Constraint that asserts that the value is null.
PHPUnit\Framework\Constraint\IsTrue isTrue() Constraint that asserts that the value is true.
PHPUnit\Framework\Constraint\IsType isType(string $type) Constraint that asserts that the value is of a specified type.
PHPUnit\Framework\Constraint\LessThan lessThan(mixed $value) Constraint that asserts that the value is smaller than a given value.
PHPUnit\Framework\Constraint\Or lessThanOrEqual(mixed $value) Constraint that asserts that the value is smaller than or equal to a given value.
logicalAnd() Logical AND.
logicalNot(PHPUnit\Framework\Constraint $constraint) Logical NOT.
logicalOr() Logical OR.
logicalXor() Logical XOR.
PHPUnit\Framework\Constraint\PCREMatch matchesRegularExpression(string $pattern) Constraint that asserts that the string matches a regular expression.
PHPUnit\Framework\Constraint\StringContains stringContains(string $string, bool $case) Constraint that asserts that the string contains a given string.
PHPUnit\Framework\Constraint\StringEndsWith stringEndsWith(string $suffix) Constraint that asserts that the string ends with a given suffix.
PHPUnit\Framework\Constraint\StringStartsWith stringStartsWith(string $prefix) Constraint that asserts that the string starts with a given prefix.

12.59 assertTrue()

assertTrue(bool $condition[, string $message = ''])

Reports an error identified by $message if $condition is false.

assertNotTrue() is the inverse of this assertion and takes the same arguments.

Example 12.62: Usage of assertTrue()

<?php
use PHPUnit\Framework\TestCase;

class TrueTest extends TestCase
{

public function testFailure()

12.59. assertTrue() 133

PHPUnit Manual, Release latest

{
$this->assertTrue(false);

}
}
?>

$ phpunit TrueTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) TrueTest::testFailure
Failed asserting that false is true.

/home/sb/TrueTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.60 assertXmlFileEqualsXmlFile()

assertXmlFileEqualsXmlFile(string $expectedFile, string $actualFile[, string
$message = ''])

Reports an error identified by $message if the XML document in $actualFile is not equal to the XML document
in $expectedFile.

assertXmlFileNotEqualsXmlFile() is the inverse of this assertion and takes the same arguments.

Example 12.63: Usage of assertXmlFileEqualsXmlFile()

<?php
use PHPUnit\Framework\TestCase;

class XmlFileEqualsXmlFileTest extends TestCase
{

public function testFailure()
{

$this->assertXmlFileEqualsXmlFile(
'/home/sb/expected.xml', '/home/sb/actual.xml');

}
}
?>

$ phpunit XmlFileEqualsXmlFileTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.25Mb

134 Chapter 12. Assertions

PHPUnit Manual, Release latest

There was 1 failure:

1) XmlFileEqualsXmlFileTest::testFailure
Failed asserting that two DOM documents are equal.
--- Expected
+++ Actual
@@ @@
<?xml version="1.0"?>
<foo>

- <bar/>
+ <baz/>
</foo>

/home/sb/XmlFileEqualsXmlFileTest.php:7

FAILURES!
Tests: 1, Assertions: 3, Failures: 1.

12.61 assertXmlStringEqualsXmlFile()

assertXmlStringEqualsXmlFile(string $expectedFile, string $actualXml[, string
$message = ''])

Reports an error identified by $message if the XML document in $actualXml is not equal to the XML document
in $expectedFile.

assertXmlStringNotEqualsXmlFile() is the inverse of this assertion and takes the same arguments.

Example 12.64: Usage of assertXmlStringEqualsXmlFile()

<?php
use PHPUnit\Framework\TestCase;

class XmlStringEqualsXmlFileTest extends TestCase
{

public function testFailure()
{

$this->assertXmlStringEqualsXmlFile(
'/home/sb/expected.xml', '<foo><baz/></foo>');

}
}
?>

$ phpunit XmlStringEqualsXmlFileTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.25Mb

There was 1 failure:

1) XmlStringEqualsXmlFileTest::testFailure
Failed asserting that two DOM documents are equal.
--- Expected

12.61. assertXmlStringEqualsXmlFile() 135

PHPUnit Manual, Release latest

+++ Actual
@@ @@
<?xml version="1.0"?>
<foo>

- <bar/>
+ <baz/>
</foo>

/home/sb/XmlStringEqualsXmlFileTest.php:7

FAILURES!
Tests: 1, Assertions: 2, Failures: 1.

12.62 assertXmlStringEqualsXmlString()

assertXmlStringEqualsXmlString(string $expectedXml, string $actualXml[, string
$message = ''])

Reports an error identified by $message if the XML document in $actualXml is not equal to the XML document
in $expectedXml.

assertXmlStringNotEqualsXmlString() is the inverse of this assertion and takes the same arguments.

Example 12.65: Usage of assertXmlStringEqualsXmlString()

<?php
use PHPUnit\Framework\TestCase;

class XmlStringEqualsXmlStringTest extends TestCase
{

public function testFailure()
{

$this->assertXmlStringEqualsXmlString(
'<foo><bar/></foo>', '<foo><baz/></foo>');

}
}
?>

$ phpunit XmlStringEqualsXmlStringTest
PHPUnit latest.0 by Sebastian Bergmann and contributors.

F

Time: 0 seconds, Memory: 5.00Mb

There was 1 failure:

1) XmlStringEqualsXmlStringTest::testFailure
Failed asserting that two DOM documents are equal.
--- Expected
+++ Actual
@@ @@
<?xml version="1.0"?>
<foo>

- <bar/>

136 Chapter 12. Assertions

PHPUnit Manual, Release latest

+ <baz/>
</foo>

/home/sb/XmlStringEqualsXmlStringTest.php:7

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

12.62. assertXmlStringEqualsXmlString() 137

PHPUnit Manual, Release latest

138 Chapter 12. Assertions

CHAPTER 13

Annotations

An annotation is a special form of syntactic metadata that can be added to the source code of some program-
ming languages. While PHP has no dedicated language feature for annotating source code, the usage of tags such
as @annotation arguments in a documentation block has been established in the PHP community to anno-
tate source code. In PHP documentation blocks are reflective: they can be accessed through the Reflection API’s
getDocComment() method on the function, class, method, and attribute level. Applications such as PHPUnit use
this information at runtime to configure their behaviour.

Note

A doc comment in PHP must start with /** and end with */. Annotations in any other style of comment will be
ignored.

This appendix shows all the varieties of annotations supported by PHPUnit.

13.1 @author

The @author annotation is an alias for the @group annotation (see @group) and allows to filter tests based on their
authors.

13.2 @after

The @after annotation can be used to specify methods that should be called after each test method in a test case
class.

use PHPUnit\Framework\TestCase;

class MyTest extends TestCase
{

/**

139

PHPUnit Manual, Release latest

* @after

*/
public function tearDownSomeFixtures()
{

// ...
}

/**
* @after

*/
public function tearDownSomeOtherFixtures()
{

// ...
}

}

13.3 @afterClass

The @afterClass annotation can be used to specify static methods that should be called after all test methods in a
test class have been run to clean up shared fixtures.

use PHPUnit\Framework\TestCase;

class MyTest extends TestCase
{

/**
* @afterClass

*/
public static function tearDownSomeSharedFixtures()
{

// ...
}

/**
* @afterClass

*/
public static function tearDownSomeOtherSharedFixtures()
{

// ...
}

}

13.4 @backupGlobals

PHPUnit can optionally backup all global and super-global variables before each test and restore this backup after
each test.

The @backupGlobals enabled annotation can be used on the class level to enable this operation for all tests of
a test case class:

use PHPUnit\Framework\TestCase;

/**

140 Chapter 13. Annotations

PHPUnit Manual, Release latest

* @backupGlobals enabled

*/
class MyTest extends TestCase
{

// ...
}

The @backupGlobals annotation can also be used on the test method level. This allows for a fine-grained config-
uration of the backup and restore operations:

use PHPUnit\Framework\TestCase;

/**
* @backupGlobals enabled

*/
class MyTest extends TestCase
{

public function testThatInteractsWithGlobalVariables()
{

// ...
}

/**
* @backupGlobals disabled

*/
public function testThatDoesNotInteractWithGlobalVariables()
{

// ...
}

}

13.5 @backupStaticAttributes

PHPUnit can optionally backup all static attributes in all declared classes before each test and restore this backup after
each test.

The @backupStaticAttributes enabled annotation can be used on the class level to enable this operation
for all tests of a test case class:

use PHPUnit\Framework\TestCase;

/**
* @backupStaticAttributes enabled

*/
class MyTest extends TestCase
{

// ...
}

The @backupStaticAttributes annotation can also be used on the test method level. This allows for a fine-
grained configuration of the backup and restore operations:

use PHPUnit\Framework\TestCase;

/**

13.5. @backupStaticAttributes 141

PHPUnit Manual, Release latest

* @backupStaticAttributes enabled

*/
class MyTest extends TestCase
{

public function testThatInteractsWithStaticAttributes()
{

// ...
}

/**
* @backupStaticAttributes disabled

*/
public function testThatDoesNotInteractWithStaticAttributes()
{

// ...
}

}

Note

@backupStaticAttributes is limited by PHP internals and may cause unintended static values to persist and
leak into subsequent tests in some circumstances.

See Global State for details.

13.6 @before

The @before annotation can be used to specify methods that should be called before each test method in a test case
class.

use PHPUnit\Framework\TestCase;

class MyTest extends TestCase
{

/**
* @before

*/
public function setupSomeFixtures()
{

// ...
}

/**
* @before

*/
public function setupSomeOtherFixtures()
{

// ...
}

}

142 Chapter 13. Annotations

PHPUnit Manual, Release latest

13.7 @beforeClass

The @beforeClass annotation can be used to specify static methods that should be called before any test methods
in a test class are run to set up shared fixtures.

use PHPUnit\Framework\TestCase;

class MyTest extends TestCase
{

/**
* @beforeClass

*/
public static function setUpSomeSharedFixtures()
{

// ...
}

/**
* @beforeClass

*/
public static function setUpSomeOtherSharedFixtures()
{

// ...
}

}

13.8 @codeCoverageIgnore*

The @codeCoverageIgnore, @codeCoverageIgnoreStart and @codeCoverageIgnoreEnd annota-
tions can be used to exclude lines of code from the coverage analysis.

For usage see Ignoring Code Blocks.

13.9 @covers

The @covers annotation can be used in the test code to specify which parts of the code it is supposed to test:

/**
* @covers \BankAccount

*/
public function testBalanceIsInitiallyZero()
{

$this->assertSame(0, $this->ba->getBalance());
}

If provided, this effectively filters the code coverage report to include executed code from the referenced code parts
only. This will make sure that code is only marked as covered if there are dedicated tests for it, but not if it used
indirectly by the tests for a different class, thus avoiding false positives for code coverage.

This annotation can be added to the docblock of the test class or the individual test methods. The recommended way
is to add the annotation to the docblock of the test class, not to the docblock of the test methods.

When the forceCoversAnnotation configuration option in the configuration file is set to true, every test
method needs to have an associated @covers annotation (either on the test class or the individual test method).

13.7. @beforeClass 143

PHPUnit Manual, Release latest

Table 13.1 shows the syntax of the @covers annotation. The section Specifying Covered Code Parts provides longer
examples for using the annotation.

Please note that this annotation requires a fully-qualified class name (FQCN). To make this more obvious to the reader,
it is recommended to use a leading backslash (even if this not required for the annotation to work correctly).

Table 13.1: Annotations for specifying which methods are covered by a
test

Annotation Description
@covers ClassName::methodName
(not recommended)

Specifies that the annotated test method covers the specified
method.

@covers ClassName (recommended) Specifies that the annotated test method covers all methods of a
given class.

@covers ClassName<extended>
(not recommended)

Specifies that the annotated test method covers all methods of a
given class and its parent class(es).

@covers ClassName::<public>
(not recommended)

Specifies that the annotated test method covers all public methods
of a given class.

@covers ClassName::<protected>
(not recommended)

Specifies that the annotated test method covers all protected meth-
ods of a given class.

@covers ClassName::<private>
(not recommended)

Specifies that the annotated test method covers all private methods
of a given class.

@covers ClassName::<!public>
(not recommended)

Specifies that the annotated test method covers all methods of a
given class that are not public.

@covers ClassName::<!
protected> (not recommended)

Specifies that the annotated test method covers all methods of a
given class that are not protected.

@covers ClassName::<!private>
(not recommended)

Specifies that the annotated test method covers all methods of a
given class that are not private.

@covers ::functionName (recom-
mended)

Specifies that the annotated test method covers the specified global
function.

13.10 @coversDefaultClass

The @coversDefaultClass annotation can be used to specify a default namespace or class name. That way long
names don’t need to be repeated for every @covers annotation. See Example 13.1.

Please note that this annotation requires a fully-qualified class name (FQCN). To make this more obvious to the reader,
it is recommended to use a leading backslash (even if this not required for the annotation to work correctly).

Example 13.1: Using @coversDefaultClass to shorten annotations

<?php
use PHPUnit\Framework\TestCase;

/**
* @coversDefaultClass \Foo\CoveredClass

*/
class CoversDefaultClassTest extends TestCase
{

/**
* @covers ::publicMethod

*/
public function testSomething()
{

$o = new Foo\CoveredClass;

144 Chapter 13. Annotations

PHPUnit Manual, Release latest

$o->publicMethod();
}

}

13.11 @coversNothing

The @coversNothing annotation can be used in the test code to specify that no code coverage information will be
recorded for the annotated test case.

This can be used for integration testing. See A test that specifies that no method should be covered for an example.

The annotation can be used on the class and the method level and will override any @covers tags.

13.12 @dataProvider

A test method can accept arbitrary arguments. These arguments are to be provided by one or more data provider
methods (provider() in Using a data provider that returns an array of arrays). The data provider method to be
used is specified using the @dataProvider annotation.

See Data Providers for more details.

13.13 @depends

PHPUnit supports the declaration of explicit dependencies between test methods. Such dependencies do not define the
order in which the test methods are to be executed but they allow the returning of an instance of the test fixture by a
producer and passing it to the dependent consumers. Using the @depends annotation to express dependencies shows
how to use the @depends annotation to express dependencies between test methods.

See Test Dependencies for more details.

13.14 @doesNotPerformAssertions

Prevents a test that performs no assertions from being considered risky.

13.15 @group

A test can be tagged as belonging to one or more groups using the @group annotation like this

use PHPUnit\Framework\TestCase;

class MyTest extends TestCase
{

/**
* @group specification

*/
public function testSomething()
{
}

13.11. @coversNothing 145

PHPUnit Manual, Release latest

/**
* @group regresssion

* @group bug2204

*/
public function testSomethingElse()
{
}

}

The @group annotation can also be provided for the test class. It is then “inherited” to all test methods of that test
class.

Tests can be selected for execution based on groups using the --group and --exclude-group options of the
command-line test runner or using the respective directives of the XML configuration file.

13.16 @large

The @large annotation is an alias for @group large.

If the PHP_Invoker package is installed and strict mode is enabled, a large test will fail if it takes longer than 60 sec-
onds to execute. This timeout is configurable via the timeoutForLargeTests attribute in the XML configuration
file.

13.17 @medium

The @medium annotation is an alias for @group medium. A medium test must not depend on a test marked as
@large.

If the PHP_Invoker package is installed and strict mode is enabled, a medium test will fail if it takes longer than
10 seconds to execute. This timeout is configurable via the timeoutForMediumTests attribute in the XML
configuration file.

13.18 @preserveGlobalState

When a test is run in a separate process, PHPUnit will attempt to preserve the global state from the parent process by
serializing all globals in the parent process and unserializing them in the child process. This can cause problems if the
parent process contains globals that are not serializable. To fix this, you can prevent PHPUnit from preserving global
state with the @preserveGlobalState annotation.

use PHPUnit\Framework\TestCase;

class MyTest extends TestCase
{

/**
* @runInSeparateProcess

* @preserveGlobalState disabled

*/
public function testInSeparateProcess()
{

// ...

146 Chapter 13. Annotations

PHPUnit Manual, Release latest

}
}

13.19 @requires

The @requires annotation can be used to skip tests when common preconditions, like the PHP Version or installed
extensions, are not met.

A complete list of possibilities and examples can be found at Possible @requires usages

13.20 @runTestsInSeparateProcesses

Indicates that all tests in a test class should be run in a separate PHP process.

use PHPUnit\Framework\TestCase;

/**
* @runTestsInSeparateProcesses

*/
class MyTest extends TestCase
{

// ...
}

Note: By default, PHPUnit will attempt to preserve the global state from the parent process by serializing all globals in
the parent process and unserializing them in the child process. This can cause problems if the parent process contains
globals that are not serializable. See @preserveGlobalState for information on how to fix this.

13.21 @runInSeparateProcess

Indicates that a test should be run in a separate PHP process.

use PHPUnit\Framework\TestCase;

class MyTest extends TestCase
{

/**
* @runInSeparateProcess

*/
public function testInSeparateProcess()
{

// ...
}

}

Note: By default, PHPUnit will attempt to preserve the global state from the parent process by serializing all globals in
the parent process and unserializing them in the child process. This can cause problems if the parent process contains
globals that are not serializable. See @preserveGlobalState for information on how to fix this.

13.19. @requires 147

PHPUnit Manual, Release latest

13.22 @small

The @small annotation is an alias for @group small. A small test must not depend on a test marked as @medium
or @large.

If the PHP_Invoker package is installed and strict mode is enabled, a small test will fail if it takes longer than 1 sec-
ond to execute. This timeout is configurable via the timeoutForSmallTests attribute in the XML configuration
file.

Note

Tests need to be explicitly annotated by either @small, @medium, or @large to enable run time limits.

13.23 @test

As an alternative to prefixing your test method names with test, you can use the @test annotation in a method’s
DocBlock to mark it as a test method.

/**
* @test

*/
public function initialBalanceShouldBe0()
{

$this->assertSame(0, $this->ba->getBalance());
}

13.24 @testdox

Specifies an alternative description used when generating the agile documentation sentences.

The @testdox annotation can be applied to both test classes and test methods.

/**
* @testdox A bank account

*/
class BankAccountTest extends TestCase
{

/**
* @testdox has an initial balance of zero

*/
public function balanceIsInitiallyZero()
{

$this->assertSame(0, $this->ba->getBalance());
}

}

Note

Prior to PHPUnit 7.0 (due to a bug in the annotation parsing), using the @testdox annotation also activated the
behaviour of the @test annotation.

148 Chapter 13. Annotations

PHPUnit Manual, Release latest

When using the @testdox annotation at method level with a @dataProvider you may use the method parameters
as placeholders in your alternative description.

/**
* @dataProvider additionProvider

* @testdox Adding $a to $b results in $expected

*/
public function testAdd($a, $b, $expected)
{

$this->assertSame($expected, $a + $b);
}

public function additionProvider()
{

return [
[0, 0, 0],
[0, 1, 1],
[1, 0, 1],
[1, 1, 3]

];
}

13.25 @testWith

Instead of implementing a method for use with @dataProvider, you can define a data set using the @testWith
annotation.

A data set consists of one or many elements. To define a data set with multiple elements, define each element in a
separate line. Each element of the data set must be an array defined in JSON.

See Data Providers to learn more about passing a set of data to a test.

/**
* @param string $input

* @param int $expectedLength

*
* @testWith ["test", 4]

* ["longer-string", 13]

*/
public function testStringLength(string $input, int $expectedLength)
{

$this->assertSame($expectedLength, strlen($input));
}

An object representation in JSON will be converted into an associative array.

/**
* @param array $array

* @param array $keys

*
* @testWith [{"day": "monday", "conditions": "sunny"}, ["day", "conditions"]]

*/
public function testArrayKeys($array, $keys)
{

$this->assertSame($keys, array_keys($array));
}

13.25. @testWith 149

PHPUnit Manual, Release latest

13.26 @ticket

The @ticket annotation is an alias for the @group annotation (see @group) and allows to filter tests based on their
ticket ID.

13.27 @uses

The @uses annotation specifies code which will be executed by a test, but is not intended to be covered by the test.
A good example is a value object which is necessary for testing a unit of code.

/**
* @covers \BankAccount

* @uses \Money

*/
public function testMoneyCanBeDepositedInAccount()
{

// ...
}

Example 9.2 shows another example.

In addition to being helpful for persons reading the code, this annotation is useful in strict coverage mode where un-
intentionally covered code will cause a test to fail. See Unintentionally Covered Code for more information regarding
strict coverage mode.

Please note that this annotation requires a fully-qualified class name (FQCN). To make this more obvious to the reader,
it is recommended to use a leading backslash (even if this is not required for the annotation to work correctly).

150 Chapter 13. Annotations

CHAPTER 14

The XML Configuration File

14.1 The <phpunit> Element

14.1.1 The backupGlobals Attribute

Possible values: true or false (default: false)

PHPUnit can optionally backup all global and super-global variables before each test and restore this backup after
each test.

This attribute configures this operation for all tests. This configuration can be overridden using the
@backupGlobals annotation on the test case class and test method level.

14.1.2 The backupStaticAttributes Attribute

Possible values: true or false (default: false)

PHPUnit can optionally backup all static attributes in all declared classes before each test and restore this backup after
each test.

This attribute configures this operation for all tests. This configuration can be overridden using the
@backupStaticAttributes annotation on the test case class and test method level.

14.1.3 The bootstrap Attribute

This attribute configures the bootstrap script that is loaded before the tests are executed. This script usually only
registers the autoloader callback that is used to load the code under test.

14.1.4 The cacheResult Attribute

Possible values: true or false (default: true)

151

PHPUnit Manual, Release latest

This attribute configures the caching of test results. This caching is required for certain other features to work.

14.1.5 The cacheResultFile Attribute

This attribute configures the file in which the test result cache (see above) is stored.

14.1.6 The cacheTokens Attribute

Possible values: true or false (default: false)

This attribute configures the in-memory cache of the token streams that are used for code coverage analysis.

When more than one code coverage report is generated in a single run, enabling this cache will increase memory usage
and may reduce the time to generate the reports.

14.1.7 The colors Attribute

Possible values: true or false (default: false)

This attribute configures whether colors are used in PHPUnit’s output.

Setting this attribute to true is equivalent to using the --colors=auto CLI option.

Setting this attribute to false is equivalent to using the --colors=never CLI option.

14.1.8 The columns Attribute

Possible values: integer or string max (default: 80)

This attribute configures the number of columns to use for progress output.

If max is defined as value, the number of columns will be maximum of the current terminal.

14.1.9 The convertDeprecationsToExceptions Attribute

Possible values: true or false (default: true)

This attribute configures whether E_DEPRECATED and E_USER_DEPRECATED events triggered by the code under
test are converted to an exception (and mark the test as error).

14.1.10 The convertErrorsToExceptions Attribute

Possible values: true or false (default: true)

This attribute configures whether E_ERROR and E_USER_ERROR events triggered by the code under test are con-
verted to an exception (and mark the test as error).

14.1.11 The convertNoticesToExceptions Attribute

Possible values: true or false (default: true)

This attribute configures whether E_STRICT, E_NOTICE, and E_USER_NOTICE events triggered by the code under
test are converted to an exception (and mark the test as error).

152 Chapter 14. The XML Configuration File

PHPUnit Manual, Release latest

14.1.12 The convertWarningsToExceptions Attribute

Possible values: true or false (default: true)

This attribute configures whether E_WARNING and E_USER_WARNING events triggered by the code under test are
converted to an exception (and mark the test as error).

14.1.13 The disableCodeCoverageIgnore Attribute

Possible values: true or false (default: false)

This attribute configures whether the @codeCoverageIgnore* annotations should be ignored.

14.1.14 The forceCoversAnnotation Attribute

Possible values: true or false (default: false)

This attribute configures whether a test will be marked as risky (see Unintentionally Covered Code) when it does not
have a @covers annotation.

14.1.15 The printerClass Attribute

Default: PHPUnit\TextUI\ResultPrinter

This attribute configures the name of a class that either is PHPUnit\TextUI\ResultPrinter or that extends
PHPUnit\TextUI\ResultPrinter. An object of this class is used to print progress and test results.

14.1.16 The printerFile Attribute

This attribute can be used to configure the path to the sourcecode file that declares the class configured with
printerClass in case that class cannot be autoloaded.

14.1.17 The processIsolation Attribute

Possible values: true or false (default: false)

This attribute configures whether each test should be run in a separate PHP process for increased isolation.

14.1.18 The stopOnError Attribute

Possible values: true or false (default: false)

This attribute configures whether the test suite execution should be stopped after the first test finished with status
“error”.

14.1.19 The stopOnFailure Attribute

Possible values: true or false (default: false)

This attribute configures whether the test suite execution should be stopped after the first test finished with status
“failure”.

14.1. The <phpunit> Element 153

PHPUnit Manual, Release latest

14.1.20 The stopOnIncomplete Attribute

Possible values: true or false (default: false)

This attribute configures whether the test suite execution should be stopped after the first test finished with status
“incomplete”.

14.1.21 The stopOnRisky Attribute

Possible values: true or false (default: false)

This attribute configures whether the test suite execution should be stopped after the first test finished with status
“risky”.

14.1.22 The stopOnSkipped Attribute

Possible values: true or false (default: false)

This attribute configures whether the test suite execution should be stopped after the first test finished with status
“skipped”.

14.1.23 The stopOnWarning Attribute

Possible values: true or false (default: false)

This attribute configures whether the test suite execution should be stopped after the first test finished with status
“warning”.

14.1.24 The stopOnDefect Attribute

Possible values: true or false (default: false)

This attribute configures whether the test suite execution should be stopped after the first test finished with a status
“error”, “failure”, “risky” or “warning”.

14.1.25 The failOnRisky Attribute

Possible values: true or false (default: false)

This attribute configures whether the PHPUnit test runner should exit with a shell exit code that indicates failure when
all tests are successful but there are tests that were marked as risky.

14.1.26 The failOnWarning Attribute

Possible values: true or false (default: false)

This attribute configures whether the PHPUnit test runner should exit with a shell exit code that indicates failure when
all tests are successful but there are tests that had warnings.

154 Chapter 14. The XML Configuration File

PHPUnit Manual, Release latest

14.1.27 The beStrictAboutChangesToGlobalState Attribute

Possible values: true or false (default: false)

This attribute configures whether PHPUnit should mark a test as risky when global state is manipulated by the code
under test (or the test code).

14.1.28 The beStrictAboutOutputDuringTests Attribute

Possible values: true or false (default: false)

This attribute configures whether PHPUnit should mark a test as risky when the code under test (or the test code) prints
output.

14.1.29 The beStrictAboutResourceUsageDuringSmallTests Attribute

Possible values: true or false (default: false)

This attribute configures whether PHPUnit should mark a test that is annotated with @small as risky when it invokes
a PHP built-in function or method that operates on resource variables.

14.1.30 The beStrictAboutTestsThatDoNotTestAnything Attribute

Possible values: true or false (default: true)

This attribute configures whether PHPUnit should mark a test as risky when no assertions are performed (expectations
are also considered).

14.1.31 The beStrictAboutTodoAnnotatedTests Attribute

Possible values: true or false (default: false)

This attribute configures whether PHPUnit should mark a test as risky when it is annotated with @todo.

14.1.32 The beStrictAboutCoversAnnotation Attribute

Possible values: true or false (default: false)

This attribute configures whether PHPUnit should mark a test as risky when it executes code that is not specified using
@covers or @uses.

14.1.33 The ignoreDeprecatedCodeUnitsFromCodeCoverage Attribute

Possible values: true or false (default: false)

This attribute configures whether code units annotated with @deprecated should be ignored from code covreage.

14.1.34 The enforceTimeLimit Attribute

Possible values: true or false (default: false)

This attribute configures whether time limits should be enforced.

14.1. The <phpunit> Element 155

PHPUnit Manual, Release latest

14.1.35 The defaultTimeLimit Attribute

Possible values: integer (default: 0)

This attribute configures the default time limit (in seconds).

14.1.36 The timeoutForSmallTests Attribute

Possible values: integer (default: 1)

This attribute configures the time limit for tests annotated with @small (in seconds).

14.1.37 The timeoutForMediumTests Attribute

Possible values: integer (default: 10)

This attribute configures the time limit for tests annotated with @medium (in seconds).

14.1.38 The timeoutForLargeTests Attribute

Possible values: integer (default: 60)

This attribute configures the time limit for tests annotated with @large (in seconds).

14.1.39 The testSuiteLoaderClass Attribute

Default: PHPUnit\Runner\StandardTestSuiteLoader

This attribute configures the name of a class that implements the PHPUnit\Runner\TestSuiteLoader inter-
face. An object of this class is used to load the test suite.

14.1.40 The testSuiteLoaderFile Attribute

This attribute can be used to configure the path to the sourcecode file that declares the class configured with
testSuiteLoaderClass in case that class cannot be autoloaded.

14.1.41 The defaultTestSuite Attribute

This attribute configures the name of the default test suite.

14.1.42 The verbose Attribute

Possible values: true or false (default: false)

This attribute configures whether more verbose output should be printed.

14.1.43 The stderr Attribute

Possible values: true or false (default: false)

This attribute configures whether PHPUnit should print its output to stderr instead of stdout.

156 Chapter 14. The XML Configuration File

PHPUnit Manual, Release latest

14.1.44 The reverseDefectList Attribute

Possible values: true or false (default: false)

This attribute configures whether tests that are not successful should be printed in reverse order.

14.1.45 The registerMockObjectsFromTestArgumentsRecursively Attribute

Possible values: true or false (default: false)

This attribute configures whether arrays and object graphs that are passed from one test to another using the
@depends annotation should be recursively scanned for mock objects.

14.1.46 The extensionsDirectory Attribute

When phpunit.phar is used then this attribute may be used to configure a directory from which all *.phar files
will be loaded as extensions for the PHPUnit test runner.

14.1.47 The executionOrder Attribute

Possible values: default, defects, depends, no-depends, duration, random, reverse, size

Using multiple values is possible. These need to be separated by ,.

This attribute configures the order in which tests are executed.

14.1.48 The resolveDependencies Attribute

Possible values: true or false (default: true)

This attribute configures whether dependencies between tests (expressed using the @depends annotation) should be
resolved.

14.1.49 The testdox Attribute

Possible values: true or false (default: false)

This attribute configures whether the output should be printed in TestDox format.

14.1.50 The noInteraction Attribute

Possible values: true or false (default: false)

This attribute configures whether progress should be animated when TestDox format is used, for instance.

14.2 The <testsuites> Element

Parent element: <phpunit>

This element is the root for one or more <testsuite> elements that are used to configure the tests that are to be
executed.

14.2. The <testsuites> Element 157

PHPUnit Manual, Release latest

14.2.1 The <testsuite> Element

Parent element: <testsuites>

A <testsuite> element must have a name attribute and may have one or more <directory> and/or <file>
child elements that configure directories and/or files, respectively, that should be searched for tests.

<testsuites>
<testsuite name="unit">
<directory>tests/unit</directory>

</testsuite>

<testsuite name="integration">
<directory>tests/integration</directory>

</testsuite>

<testsuite name="edge-to-edge">
<directory>tests/edge-to-edge</directory>

</testsuite>
</testsuites>

Using the phpVersion and phpVersionOperator attributes, a required PHP version can be specified:

<testsuites>
<testsuite name="unit">
<directory phpVersion="8.0.0" phpVersionOperator=">=">tests/unit</directory>

</testsuite>
</testsuites>

In the example above, the tests from the tests/unit directory are only added to the test suite if the PHP version is
at least 8.0.0. The phpVersionOperator attribute is optional and defaults to >=.

14.3 The <groups> Element

Parent element: <phpunit>

The <groups> element and its <include>, <exclude>, and <group> children can be used to select groups of
tests marked with the @group annotation (documented in @group) that should (not) be run:

<groups>
<include>
<group>name</group>

</include>
<exclude>
<group>name</group>

</exclude>
</groups>

The example shown above is equivalent to invoking the PHPUnit test runner with --group name
--exclude-group name.

14.4 The <testdoxGroups> Element

Parent element: <phpunit>

158 Chapter 14. The XML Configuration File

PHPUnit Manual, Release latest

. . . TBD . . .

14.5 The <filter> Element

Parent element: <phpunit>

The <filter/whitelist> element and its children can be used to configure the whitelist for the code coverage
reporting:

<filter>
<whitelist processUncoveredFilesFromWhitelist="true">
<directory suffix=".php">src</directory>
<exclude>

<file>src/autoload.php</file>
</exclude>

</whitelist>
</filter>

14.6 The <listeners> Element

Parent element: <phpunit>

The <listeners> element and its <listener> children can be used to attach additional test listeners to the test
execution.

14.6.1 The <listener> Element

Parent element: <listeners>

<listeners>
<listener class="MyListener" file="/optional/path/to/MyListener.php">
<arguments>

<array>
<element key="0">
<string>Sebastian</string>

</element>
</array>
<integer>22</integer>
<string>April</string>
<double>19.78</double>
<null/>
<object class="stdClass"/>

</arguments>
</listener>

</listeners>

The XML configuration above corresponds to attaching the $listener object (see below) to the test execution:

$listener = new MyListener(
['Sebastian'],
22,
'April',
19.78,

14.5. The <filter> Element 159

PHPUnit Manual, Release latest

null,
new stdClass

);

Note

Please note that the PHPUnit\Framework\TestListener interface is deprecated and will be removed in the
future. TestRunner extensions should be used instead of test listeners.

14.7 The <extensions> Element

Parent element: <phpunit>

The <extensions> element and its <extension> children can be used to register test runner extensions.

14.7.1 The <extension> Element

Parent element: <extensions>

<extensions>
<extension class="Vendor\MyExtension"/>

</extensions>

The <arguments> Element

Parent element: <extension>

The <arguments> element can be used to configure a single <extension>.

Accepts a list of elements of types, which are then used to configure individual extensions. The arguments are passed
to the extension class’ __constructor method in the order they are defined in the configuration.

Available types:

• <boolean>

• <integer>

• <string>

• <double> (float)

• <array>

• <object>

<extension class="Vendor\MyExtension">
<arguments>

<integer>1</integer>
<integer>2</integer>
<integer>3</integer>
<string>hello world</string>
<boolean>true</boolean>
<double>1.23</double>
<array>

160 Chapter 14. The XML Configuration File

PHPUnit Manual, Release latest

<element index="0">
<string>value1</string>

</element>
<element index="1">

<string>value2</string>
</element>

</array>
<object class="Vendor\MyPhpClass">

<string>constructor arg 1</string>
<string>constructor arg 2</string>

</object>
</arguments>

</extension>

14.8 The <logging> Element

Parent element: <phpunit>

The <logging> element and its <log> children can be used to configure the logging of the test execution.

14.8.1 The <log> Element

Parent element: <logging>

<logging>
<log type="coverage-html" target="/tmp/report" lowUpperBound="35" highLowerBound="70

→˓"/>
<log type="coverage-clover" target="/tmp/coverage.xml"/>
<log type="coverage-php" target="/tmp/coverage.serialized"/>
<log type="coverage-text" target="php://stdout" showUncoveredFiles="false"/>
<log type="junit" target="/tmp/logfile.xml"/>
<log type="testdox-html" target="/tmp/testdox.html"/>
<log type="testdox-text" target="/tmp/testdox.txt"/>

</logging>

The XML configuration above corresponds to invoking the TextUI test runner with the following options:

• --coverage-html /tmp/report

• --coverage-clover /tmp/coverage.xml

• --coverage-php /tmp/coverage.serialized

• --coverage-text

• > /tmp/logfile.txt

• --log-junit /tmp/logfile.xml

• --testdox-html /tmp/testdox.html

• --testdox-text /tmp/testdox.txt

The lowUpperBound, highLowerBound, and showUncoveredFiles attributes have no equivalent TextUI
test runner option.

• lowUpperBound: Maximum coverage percentage to be considered “lowly” covered.

14.8. The <logging> Element 161

PHPUnit Manual, Release latest

• highLowerBound: Minimum coverage percentage to be considered “highly” covered.

• showUncoveredFiles: Show all whitelisted files in --coverage-text output not just the ones with
coverage information.

• showOnlySummary: Show only the summary in --coverage-text output.

14.9 The <php> Element

Parent element: <phpunit>

The <php> element and its children can be used to configure PHP settings, constants, and global variables. It can also
be used to prepend the include_path.

14.9.1 The <includePath> Element

Parent element: <php>

This element can be used to prepend a path to the include_path.

14.9.2 The <ini> Element

Parent element: <php>

This element can be used to set a PHP configuration setting.

<php>
<ini name="foo" value="bar"/>

</php>

The XML configuration above corresponds to the following PHP code:

ini_set('foo', 'bar');

14.9.3 The <const> Element

Parent element: <php>

This element can be used to set a global constant.

<php>
<const name="foo" value="bar"/>

</php>

The XML configuration above corresponds to the following PHP code:

define('foo', 'bar');

14.9.4 The <var> Element

Parent element: <php>

This element can be used to set a global variable.

162 Chapter 14. The XML Configuration File

PHPUnit Manual, Release latest

<php>
<var name="foo" value="bar"/>

</php>

The XML configuration above corresponds to the following PHP code:

$GLOBALS['foo'] = 'bar';

14.9.5 The <env> Element

Parent element: <php>

This element can be used to set a value in the super-global array $_ENV.

<php>
<env name="foo" value="bar"/>

</php>

The XML configuration above corresponds to the following PHP code:

$_ENV['foo'] = 'bar';

By default, environment variables are not overwritten if they exist already. To force overwriting existing variables, use
the force attribute:

<php>
<env name="foo" value="bar" force="true"/>

</php>

14.9.6 The <get> Element

Parent element: <php>

This element can be used to set a value in the super-global array $_GET.

<php>
<get name="foo" value="bar"/>

</php>

The XML configuration above corresponds to the following PHP code:

$_GET['foo'] = 'bar';

14.9.7 The <post> Element

Parent element: <php>

This element can be used to set a value in the super-global array $_POST.

<php>
<post name="foo" value="bar"/>

</php>

14.9. The <php> Element 163

PHPUnit Manual, Release latest

The XML configuration above corresponds to the following PHP code:

$_POST['foo'] = 'bar';

14.9.8 The <cookie> Element

Parent element: <php>

This element can be used to set a value in the super-global array $_COOKIE.

<php>
<cookie name="foo" value="bar"/>

</php>

The XML configuration above corresponds to the following PHP code:

$_COOKIE['foo'] = 'bar';

14.9.9 The <server> Element

Parent element: <php>

This element can be used to set a value in the super-global array $_SERVER.

<php>
<server name="foo" value="bar"/>

</php>

The XML configuration above corresponds to the following PHP code:

$_SERVER['foo'] = 'bar';

14.9.10 The <files> Element

Parent element: <php>

This element can be used to set a value in the super-global array $_FILES.

<php>
<files name="foo" value="bar"/>

</php>

The XML configuration above corresponds to the following PHP code:

$_FILES['foo'] = 'bar';

14.9.11 The <request> Element

Parent element: <php>

This element can be used to set a value in the super-global array $_REQUEST.

164 Chapter 14. The XML Configuration File

PHPUnit Manual, Release latest

<php>
<request name="foo" value="bar"/>

</php>

The XML configuration above corresponds to the following PHP code:

$_REQUEST['foo'] = 'bar';

14.9. The <php> Element 165

PHPUnit Manual, Release latest

166 Chapter 14. The XML Configuration File

CHAPTER 15

Bibliography

[Astels2003] David Astels. Test Driven Development.

[Beck2002] Kent Beck. Test Driven Development by Example.

[Meszaros2007] Gerard Meszaros. xUnit Test Patterns: Refactoring Test Code.

167

PHPUnit Manual, Release latest

168 Chapter 15. Bibliography

CHAPTER 16

Copyright

Copyright (c) 2005-2019 Sebastian Bergmann.

This work is licensed under the Creative Commons Attribution 3.0
Unported License.

A summary of the license is given below, followed by the full legal
text.

--

You are free:

* to Share - to copy, distribute and transmit the work

* to Remix - to adapt the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by
the author or licensor (but not in any way that suggests that they
endorse you or your use of the work).

* For any reuse or distribution, you must make clear to others
the license terms of this work. The best way to do this is with
a link to this web page.

* Any of the above conditions can be waived if you get
permission from the copyright holder.

* Nothing in this license impairs or restricts the author's moral
rights.

Your fair dealing and other rights are in no way affected by the
above.

This is a human-readable summary of the Legal Code (the full

169

PHPUnit Manual, Release latest

license) below.

==

Creative Commons Legal Code
Attribution 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO
WARRANTIES REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS
LIABILITY FOR DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS
PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW
IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS
LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU
THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the
Work and other pre-existing works, such as a translation,
adaptation, derivative work, arrangement of music or other
alterations of a literary or artistic work, or phonogram or
performance and includes cinematographic adaptations or any
other form in which the Work may be recast, transformed, or
adapted including in any form recognizably derived from the
original, except that a work that constitutes a Collection
will not be considered an Adaptation for the purpose of this
License. For the avoidance of doubt, where the Work is a
musical work, performance or phonogram, the synchronization of
the Work in timed-relation with a moving image ("synching")
will be considered an Adaptation for the purpose of this
License.

b. "Collection" means a collection of literary or artistic works,
such as encyclopedias and anthologies, or performances,
phonograms or broadcasts, or other works or subject matter
other than works listed in Section 1(f) below, which, by
reason of the selection and arrangement of their contents,
constitute intellectual creations, in which the Work is
included in its entirety in unmodified form along with one or
more other contributions, each constituting separate and
independent works in themselves, which together are assembled
into a collective whole. A work that constitutes a Collection
will not be considered an Adaptation (as defined above) for
the purposes of this License.

170 Chapter 16. Copyright

PHPUnit Manual, Release latest

c. "Distribute" means to make available to the public the
original and copies of the Work or Adaptation, as appropriate,
through sale or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or
entities that offer(s) the Work under the terms of this License.

e. "Original Author" means, in the case of a literary or artistic
work, the individual, individuals, entity or entities who
created the Work or if no individual or entity can be
identified, the publisher; and in addition (i) in the case of
a performance the actors, singers, musicians, dancers, and
other persons who act, sing, deliver, declaim, play in,
interpret or otherwise perform literary or artistic works or
expressions of folklore; (ii) in the case of a phonogram the
producer being the person or legal entity who first fixes the
sounds of a performance or other sounds; and, (iii) in the
case of broadcasts, the organization that transmits the
broadcast.

f. "Work" means the literary and/or artistic work offered under
the terms of this License including without limitation any
production in the literary, scientific and artistic domain,
whatever may be the mode or form of its expression including
digital form, such as a book, pamphlet and other writing; a
lecture, address, sermon or other work of the same nature; a
dramatic or dramatico-musical work; a choreographic work or
entertainment in dumb show; a musical composition with or
without words; a cinematographic work to which are assimilated
works expressed by a process analogous to cinematography; a
work of drawing, painting, architecture, sculpture, engraving
or lithography; a photographic work to which are assimilated
works expressed by a process analogous to photography; a work
of applied art; an illustration, map, plan, sketch or three-
dimensional work relative to geography, topography,
architecture or science; a performance; a broadcast; a
phonogram; a compilation of data to the extent it is protected
as a copyrightable work; or a work performed by a variety or
circus performer to the extent it is not otherwise considered
a literary or artistic work.

g. "You" means an individual or entity exercising rights under
this License who has not previously violated the terms of
this License with respect to the Work, or who has received
express permission from the Licensor to exercise rights under
this License despite a previous violation.

h. "Publicly Perform" means to perform public recitations of the
Work and to communicate to the public those public
recitations, by any means or process, including by wire or
wireless means or public digital performances; to make
available to the public Works in such a way that members of
the public may access these Works from a place and at a place
individually chosen by them; to perform the Work to the public
by any means or process and the communication to the public of
the performances of the Work, including by public digital
performance; to broadcast and rebroadcast the Work by any
means including signs, sounds or images.

171

PHPUnit Manual, Release latest

i. "Reproduce" means to make copies of the Work by any means
including without limitation by sound or visual recordings and
the right of fixation and reproducing fixations of the Work,
including storage of a protected performance or phonogram in
digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to
reduce, limit, or restrict any uses free from copyright or rights
arising from limitations or exceptions that are provided for in
connection with the copyright protection under copyright law or
other applicable laws.

3. License Grant. Subject to the terms and conditions of this
License, Licensor hereby grants You a worldwide, royalty-free,
non-exclusive, perpetual (for the duration of the applicable
copyright) license to exercise the rights in the Work as stated
below:

a. to Reproduce the Work, to incorporate the Work into one or
more Collections, and to Reproduce the Work as incorporated
in the Collections;

b. to create and Reproduce Adaptations provided that any such
Adaptation, including any translation in any medium, takes
reasonable steps to clearly label, demarcate or otherwise
identify that changes were made to the original Work. For
example, a translation could be marked "The original work was
translated from English to Spanish," or a modification could
indicate "The original work has been modified.";

c. to Distribute and Publicly Perform the Work including as
incorporated in Collections; and,

d. to Distribute and Publicly Perform Adaptations.

e. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those
jurisdictions in which the right to collect royalties
through any statutory or compulsory licensing scheme cannot
be waived, the Licensor reserves the exclusive right to
collect such royalties for any exercise by You of the
rights granted under this License;

ii. Waivable Compulsory License Schemes. In those
jurisdictions in which the right to collect royalties
through any statutory or compulsory licensing scheme can
be waived, the Licensor waives the exclusive right to
collect such royalties for any exercise by You of the
rights granted under this License; and,

iii. Voluntary License Schemes. The Licensor waives the right
to collect royalties, whether individually or, in the
event that the Licensor is a member of a collecting
society that administers voluntary licensing schemes, via
that society, from any exercise by You of the rights
granted under this License.

172 Chapter 16. Copyright

PHPUnit Manual, Release latest

The above rights may be exercised in all media and formats whether
now known or hereafter devised. The above rights include the right
to make such modifications as are technically necessary to exercise
the rights in other media and formats. Subject to Section 8(f), all
rights not expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly
made subject to and limited by the following restrictions:

a. You may Distribute or Publicly Perform the Work only under the
terms of this License. You must include a copy of, or the
Uniform Resource Identifier (URI) for, this License with every
copy of the Work You Distribute or Publicly Perform. You may
not offer or impose any terms on the Work that restrict the
terms of this License or the ability of the recipient of the
Work to exercise the rights granted to that recipient under
the terms of the License. You may not sublicense the Work. You
must keep intact all notices that refer to this License and to
the disclaimer of warranties with every copy of the Work You
Distribute or Publicly Perform. When You Distribute or
Publicly Perform the Work, You may not impose any effective
technological measures on the Work that restrict the ability
of a recipient of the Work from You to exercise the rights
granted to that recipient under the terms of the License. This
Section 4(a) applies to the Work as incorporated in a
Collection, but this does not require the Collection apart
from the Work itself to be made subject to the terms of this
License. If You create a Collection, upon notice from any
Licensor You must, to the extent practicable, remove from the
Collection any credit as required by Section 4(b), as
requested. If You create an Adaptation, upon notice from any
Licensor You must, to the extent practicable, remove from the
Adaptation any credit as required by Section 4(b), as requested.

b. If You Distribute, or Publicly Perform the Work or any
Adaptations or Collections, You must, unless a request has
been made pursuant to Section 4(a), keep intact all copyright
notices for the Work and provide, reasonable to the medium or
means You are utilizing: (i) the name of the Original Author
(or pseudonym, if applicable) if supplied, and/or if the
Original Author and/or Licensor designate another party or
parties (e.g., a sponsor institute, publishing entity,
journal) for attribution ("Attribution Parties") in Licensor's
copyright notice, terms of service or by other reasonable
means, the name of such party or parties; (ii) the title of
the Work if supplied; (iii) to the extent reasonably
practicable, the URI, if any, that Licensor specifies to be
associated with the Work, unless such URI does not refer to
the copyright notice or licensing information for the Work;
and (iv), consistent with Section 3(b), in the case of an
Adaptation, a credit identifying the use of the Work in the
Adaptation (e.g., "French translation of the Work by Original
Author," or "Screenplay based on original Work by Original
Author"). The credit required by this Section 4 (b) may be
implemented in any reasonable manner; provided, however, that
in the case of a Adaptation or Collection, at a minimum such
credit will appear, if a credit for all contributing authors

173

PHPUnit Manual, Release latest

of the Adaptation or Collection appears, then as part of these
credits and in a manner at least as prominent as the credits
for the other contributing authors. For the avoidance of
doubt, You may only use the credit required by this Section
for the purpose of attribution in the manner set out above
and, by exercising Your rights under this License, You may not
implicitly or explicitly assert or imply any connection with,
sponsorship or endorsement by the Original Author, Licensor
and/or Attribution Parties, as appropriate, of You or Your use
of the Work, without the separate, express prior written
permission of the Original Author, Licensor and/or
Attribution Parties.

c. Except as otherwise agreed in writing by the Licensor or as
may be otherwise permitted by applicable law, if You
Reproduce, Distribute or Publicly Perform the Work either by
itself or as part of any Adaptations or Collections, You must
not distort, mutilate, modify or take other derogatory action
in relation to the Work which would be prejudicial to the
Original Author's honor or reputation. Licensor agrees that in
those jurisdictions (e.g. Japan), in which any exercise of the
right granted in Section 3(b) of this License (the right to
make Adaptations) would be deemed to be a distortion,
mutilation, modification or other derogatory action
prejudicial to the Original Author's honor and reputation, the
Licensor will waive or not assert, as appropriate, this
Section, to the fullest extent permitted by the applicable
national law, to enable You to reasonably exercise Your right
under Section 3(b) of this License (right to make Adaptations)
but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,
STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF
TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS,
ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT
DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF
IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY
APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY
LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE
OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF
THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this
License. Individuals or entities who have received Adaptations
or Collections from You under this License, however, will not
have their licenses terminated provided such individuals or
entities remain in full compliance with those licenses.

174 Chapter 16. Copyright

PHPUnit Manual, Release latest

Sections 1, 2, 5, 6, 7, and 8 will survive any termination of
this License.

b. Subject to the above terms and conditions, the license granted
here is perpetual (for the duration of the applicable
copyright in the Work). Notwithstanding the above, Licensor
reserves the right to release the Work under different license
terms or to stop distributing the Work at any time; provided,
however that any such election will not serve to withdraw this
License (or any other license that has been, or is required to
be, granted under the terms of this License), and this License
will continue in full force and effect unless terminated as
stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a
Collection, the Licensor offers to the recipient a license to
the Work on the same terms and conditions as the license
granted to You under this License.

b. Each time You Distribute or Publicly Perform an Adaptation,
Licensor offers to the recipient a license to the original
Work on the same terms and conditions as the license granted
to You under this License.

c. If any provision of this License is invalid or unenforceable
under applicable law, it shall not affect the validity or
enforceability of the remainder of the terms of this License,
and without further action by the parties to this agreement,
such provision shall be reformed to the minimum extent
necessary to make such provision valid and enforceable.

d. No term or provision of this License shall be deemed waived
and no breach consented to unless such waiver or consent shall
be in writing and signed by the party to be charged with such
waiver or consent.

e. This License constitutes the entire agreement between the
parties with respect to the Work licensed here. There are no
understandings, agreements or representations with respect to
the Work not specified here. Licensor shall not be bound by
any additional provisions that may appear in any communication
from You. This License may not be modified without the mutual
written agreement of the Licensor and You.

f. The rights granted under, and the subject matter referenced,
in this License were drafted utilizing the terminology of the
Berne Convention for the Protection of Literary and Artistic
Works (as amended on September 28, 1979), the Rome Convention
of 1961, the WIPO Copyright Treaty of 1996, the WIPO
Performances and Phonograms Treaty of 1996 and the Universal
Copyright Convention (as revised on July 24, 1971). These
rights and subject matter take effect in the relevant
jurisdiction in which the License terms are sought to be
enforced according to the corresponding provisions of the
implementation of those treaty provisions in the applicable
national law. If the standard suite of rights granted under

175

PHPUnit Manual, Release latest

applicable copyright law includes additional rights not
granted under this License, such additional rights are deemed
to be included in the License; this License is not intended to
restrict the license of any rights under applicable law.

Creative Commons is not a party to this License, and makes no
warranty whatsoever in connection with the Work. Creative Commons
will not be liable to You or any party on any legal theory for any
damages whatsoever, including without limitation any general,
special, incidental or consequential damages arising in connection
to this license. Notwithstanding the foregoing two (2) sentences,
if Creative Commons has expressly identified itself as the Licensor
hereunder, it shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, Creative Commons does not authorize
the use by either party of the trademark "Creative Commons" or any
related trademark or logo of Creative Commons without the prior
written consent of Creative Commons. Any permitted use will be in
compliance with Creative Commons' then-current trademark usage
guidelines, as may be published on its website or otherwise made
available upon request from time to time. For the avoidance of
doubt, this trademark restriction does not form part of this
License.

Creative Commons may be contacted at http://creativecommons.org/.

==

176 Chapter 16. Copyright

	Installing PHPUnit
	Requirements
	PHP Archive (PHAR)
	Verifying PHPUnit PHAR Releases

	Composer
	Global Installation

	Writing Tests for PHPUnit
	Test Dependencies
	Data Providers
	Testing Exceptions
	Testing PHP Errors, Warnings, and Notices
	Testing Output
	Error output
	Edge cases

	The Command-Line Test Runner
	Command-Line Options
	TestDox

	Fixtures
	More setUp() than tearDown()
	Variations
	Sharing Fixture
	Global State

	Organizing Tests
	Composing a Test Suite Using the Filesystem
	Composing a Test Suite Using XML Configuration

	Risky Tests
	Useless Tests
	Unintentionally Covered Code
	Output During Test Execution
	Test Execution Timeout
	Global State Manipulation

	Incomplete and Skipped Tests
	Incomplete Tests
	Skipping Tests
	Skipping Tests using @requires

	Test Doubles
	Stubs
	Mock Objects
	Prophecy
	Mocking Traits and Abstract Classes
	Stubbing and Mocking Web Services

	Code Coverage Analysis
	Software Metrics for Code Coverage
	Whitelisting Files
	Ignoring Code Blocks
	Specifying Covered Code Parts
	Edge Cases
	Speeding Up Code Coverage with Xdebug

	Logging
	Test Results (XML)
	Code Coverage (XML)
	Code Coverage (TEXT)

	Extending PHPUnit
	Subclass PHPUnit\Framework\TestCase
	Write custom assertions
	Extending the TestRunner
	Configuring extensions

	Assertions
	Static vs. Non-Static Usage of Assertion Methods
	assertArrayHasKey()
	assertClassHasAttribute()
	assertArraySubset()
	assertClassHasStaticAttribute()
	assertContains()
	assertStringContainsString()
	assertStringContainsStringIgnoringCase()
	assertContainsOnly()
	assertContainsOnlyInstancesOf()
	assertCount()
	assertDirectoryExists()
	assertDirectoryIsReadable()
	assertDirectoryIsWritable()
	assertEmpty()
	assertEqualXMLStructure()
	assertEquals()
	assertEqualsCanonicalizing()
	assertEqualsIgnoringCase()
	assertEqualsWithDelta()
	assertFalse()
	assertFileEquals()
	assertFileExists()
	assertFileIsReadable()
	assertFileIsWritable()
	assertGreaterThan()
	assertGreaterThanOrEqual()
	assertInfinite()
	assertInstanceOf()
	assertIsArray()
	assertIsBool()
	assertIsCallable()
	assertIsFloat()
	assertIsInt()
	assertIsIterable()
	assertIsNumeric()
	assertIsObject()
	assertIsResource()
	assertIsScalar()
	assertIsString()
	assertIsReadable()
	assertIsWritable()
	assertJsonFileEqualsJsonFile()
	assertJsonStringEqualsJsonFile()
	assertJsonStringEqualsJsonString()
	assertLessThan()
	assertLessThanOrEqual()
	assertNan()
	assertNull()
	assertObjectHasAttribute()
	assertRegExp()
	assertStringMatchesFormat()
	assertStringMatchesFormatFile()
	assertSame()
	assertStringEndsWith()
	assertStringEqualsFile()
	assertStringStartsWith()
	assertThat()
	assertTrue()
	assertXmlFileEqualsXmlFile()
	assertXmlStringEqualsXmlFile()
	assertXmlStringEqualsXmlString()

	Annotations
	@author
	@after
	@afterClass
	@backupGlobals
	@backupStaticAttributes
	@before
	@beforeClass
	@codeCoverageIgnore*
	@covers
	@coversDefaultClass
	@coversNothing
	@dataProvider
	@depends
	@doesNotPerformAssertions
	@group
	@large
	@medium
	@preserveGlobalState
	@requires
	@runTestsInSeparateProcesses
	@runInSeparateProcess
	@small
	@test
	@testdox
	@testWith
	@ticket
	@uses

	The XML Configuration File
	The <phpunit> Element
	The backupGlobals Attribute
	The backupStaticAttributes Attribute
	The bootstrap Attribute
	The cacheResult Attribute
	The cacheResultFile Attribute
	The cacheTokens Attribute
	The colors Attribute
	The columns Attribute
	The convertDeprecationsToExceptions Attribute
	The convertErrorsToExceptions Attribute
	The convertNoticesToExceptions Attribute
	The convertWarningsToExceptions Attribute
	The disableCodeCoverageIgnore Attribute
	The forceCoversAnnotation Attribute
	The printerClass Attribute
	The printerFile Attribute
	The processIsolation Attribute
	The stopOnError Attribute
	The stopOnFailure Attribute
	The stopOnIncomplete Attribute
	The stopOnRisky Attribute
	The stopOnSkipped Attribute
	The stopOnWarning Attribute
	The stopOnDefect Attribute
	The failOnRisky Attribute
	The failOnWarning Attribute
	The beStrictAboutChangesToGlobalState Attribute
	The beStrictAboutOutputDuringTests Attribute
	The beStrictAboutResourceUsageDuringSmallTests Attribute
	The beStrictAboutTestsThatDoNotTestAnything Attribute
	The beStrictAboutTodoAnnotatedTests Attribute
	The beStrictAboutCoversAnnotation Attribute
	The ignoreDeprecatedCodeUnitsFromCodeCoverage Attribute
	The enforceTimeLimit Attribute
	The defaultTimeLimit Attribute
	The timeoutForSmallTests Attribute
	The timeoutForMediumTests Attribute
	The timeoutForLargeTests Attribute
	The testSuiteLoaderClass Attribute
	The testSuiteLoaderFile Attribute
	The defaultTestSuite Attribute
	The verbose Attribute
	The stderr Attribute
	The reverseDefectList Attribute
	The registerMockObjectsFromTestArgumentsRecursively Attribute
	The extensionsDirectory Attribute
	The executionOrder Attribute
	The resolveDependencies Attribute
	The testdox Attribute
	The noInteraction Attribute

	The <testsuites> Element
	The <testsuite> Element

	The <groups> Element
	The <testdoxGroups> Element
	The <filter> Element
	The <listeners> Element
	The <listener> Element

	The <extensions> Element
	The <extension> Element

	The <logging> Element
	The <log> Element

	The <php> Element
	The <includePath> Element
	The <ini> Element
	The <const> Element
	The <var> Element
	The <env> Element
	The <get> Element
	The <post> Element
	The <cookie> Element
	The <server> Element
	The <files> Element
	The <request> Element

	Bibliography
	Copyright

