
The Book
Version: master

generated on July 28, 2016

The Book (master)

This work is licensedunder the ÒAttribution-ShareAlike 3.0 UnportedÓlicense(http://creativecommons.org/
licenses/by-sa/3.0/).

You arefreeto share (to copy,distribute and transmit the work), and to remix (to adaptthe work) under the
following conditions:

¥ Attribution : You must attribute the work in the mannerspecifiedby the author or licensor(but not in
any way that suggests that they endorse you or your use of the work).

¥ ShareAlike : If you alter, transform,or build upon this work, you maydistribute the resultingwork only
under the same,similar or a compatible license.For any reuseor distribution, you must makeclear to
others the license terms of this work.

The information in this book is distributed on an ÒasisÓbasis,without warranty. Although everyprecaution
hasbeentakenin the preparationof this work, neither the author(s)nor SensioLabsshallhaveany liability to
anypersonor entity with respectto anylossor damagecausedor allegedto becauseddirectly or indirectly by
the information contained in this work.

If you find typos or errors, feel free to report them by creating a ticket on the Symfony ticketing system
(http://github.com/symfony/symfony-docs/issues). Based on tickets and users feedback, this book is
continuously updated.

Contents at a Glance

Symfony and HTTP Fundamentals..4
Symfony versus Flat PHP...14
Installing and Configuring Symfony...26
Create your First Page in Symfony...33
Controller...41
Routing ..54
Creating and Using Templates...69
Configuring Symfony (and Environments)...87
The Bundle System...90
Databases and Doctrine..93
Databases and Propel..113
Testing...114
Validation...128
Forms...140
Security..164
HTTP Cache...177
Translations..193
Service Container..204
Performance...216

PDF brought to you by

generated on July 28, 2016

Contents at a Glance | iii

http://sensiolabs.com

Chapter 1

Symfony and HTTP Fundamentals

Congratulations!By learningabout Symfony,you'rewell on your way towardsbeinga more productive,
well-roundedandpopularwebdeveloper(actually,you'reon your own for the lastpart). Symfonyis built
to get back to basics:to developtools that let you developfasterand build more robust applications,
while stayingout of your way. Symfonyis built on the bestideasfrom many technologies:the tools and
conceptsyou're about to learn representthe efforts of thousandsof people,over many years.In other
words, you're not just learning "Symfony", you're learning the fundamentalsof the web, development
bestpracticesand how to usemanyamazingnewPHPlibraries,insideor independentlyof Symfony.So,
get ready.

True to the Symfonyphilosophy, this chapterbeginsby explaining the fundamentalconceptcommon
to web development:HTTP. Regardlessof your backgroundor preferredprogramming language,this
chapter is amust-read for everyone.

HTTP is Simple
HTTP (Hypertext Transfer Protocol to the geeks)is a text languagethat allows two machines to
communicatewith eachother. That's it! For example,when checking for the latest xkcd1 comic, the
following (approximate) conversation takes place:

1. http://xkcd.com/

PDF brought to you by

generated on July 28, 2016

Chapter 1: Symfony and HTTP Fundamentals | 4

http://sensiolabs.com

Listing 1-1

And while the actual languageusedis a bit more formal, it's still dead-simple.HTTP is the term usedto
describethis simpletext-basedlanguage.No matterhow you developon the web, the goalof your server
is alwaysto understand simple text requests, and return simple text responses.

Symfony is built from the ground up around that reality. Whether you realize it or not, HTTP is
something you use every day. With Symfony, you'll learn how to master it.

Step1: The Client Sends a Request

Everyconversationon the webstartswith a request. The requestis a text messagecreatedby aclient (e.g.
a browser,a smartphoneapp,etc) in a specialformat known asHTTP. The client sendsthat requestto a
server, and then waits for the response.

Take a look at the first part of the interaction (the request) between a browser and the xkcd web server:

In HTTP-speak, this HTTP request would actually look something like this:

1
2
3
4

GET / HTTP/1.1
Host: xkcd.com
Accept: text/html
User-Agent: Mozilla/5.0 (Macintosh)

This simple messagecommunicateseverythingnecessaryabout exactly which resourcethe client is
requesting.The first line of an HTTP requestis the most important, becauseit containstwo important
things: the HTTP method (GET) and the URL (/).

The URI (e.g./ , /contact , etc) is the unique addressor location that identifies the resourcethe client
wants.The HTTP method (e.g.GET) defineswhat the client wants to do with the resource.The HTTP

PDF brought to you by

generated on July 28, 2016

Chapter 1: Symfony and HTTP Fundamentals | 5

http://sensiolabs.com

Listing 1-2

Listing 1-3

methods(alsoknown asverbs)definethe few common waysthat the client canact upon the resource-
the most common HTTP methods are:

GET Retrieve the resource from the server

POST Create a resource on the server

PUT Update the resource on the server

DELETE Delete the resource from the server

With this in mind, you canimaginewhat anHTTP requestmight look like to deleteaspecificblog entry,
for example:

1 DELETE /blog/15 HTTP/1.1

ThereareactuallynineHTTP methodsdefinedby the HTTP specification,but manyof themarenot
widely usedor supported.In reality, manymodernbrowsersonly support POSTand GETin HTML
forms. Variousothersarehoweversupportedin XMLHttpRequest2, aswell asby Symfony'sRouting
component.

In addition to the first line, anHTTP requestinvariablycontainsother linesof information calledrequest
headers. The headerscan supply a wide rangeof information such as the host of the resourcebeing
requested(Host), the responseformats the client accepts(Accept) and the application the client is
using to makethe request(User-Agent). Many other headersexist and can be found on Wikipedia's
List of HTTP header fields3 article.

Step 2: The Server Returns a Response

Once a serverhasreceivedthe request,it knows exactlywhich resourcethe client needs(via the URI)
and what the client wants to do with that resource(via the method). For example,in the caseof a GET
request,the serverpreparesthe resourceandreturnsit in anHTTP response.Considerthe responsefrom
the xkcd web server:

Translated into HTTP, the response sent back to the browser will look something like this:

2. https://en.wikipedia.org/wiki/XMLHttpRequest

3. https://en.wikipedia.org/wiki/List_of_HTTP_header_fields

PDF brought to you by

generated on July 28, 2016

Chapter 1: Symfony and HTTP Fundamentals | 6

http://sensiolabs.com

Listing 1-4

1
2
3
4
5
6
7
8

HTTP/1.1 200 OK
Date: Sat, 02 Apr 2011 21:05:05 GMT
Server: lighttpd/1.4.19
Content-Type: text/html

<html>
<!-- ... HTML for the xkcd comic -->

</html>

The HTTP responsecontainsthe requestedresource(the HTML content in this case),aswell asother
information about the response.The first line is especiallyimportant and containsthe HTTP response
statuscode(200 in this case).The statuscodecommunicatesthe overall outcomeof the requestback
to the client. Was the requestsuccessful?Was there an error?Different statuscodesexist that indicate
success,an error, or that the client needsto do something(e.g.redirect to anotherpage).A full list can
be found on Wikipedia'sList of HTTP status codes4 article.

Like the request,an HTTP responsecontainsadditional piecesof information known asHTTP headers.
The body of the sameresourcecould be returned in multiple different formats like HTML, XML, or
JSON and the Content-Type headerusesInternet Media Types like text/ html to tell the client
which format is being returned. You can see aList of common media types5 from IANA.

Many other headersexist,someof which areverypowerful. For example,certainheaderscanbeusedto
create a powerful caching system.

Requests, Responses and Web Development

This request-responseconversationis the fundamentalprocessthat drivesall communicationon theweb.
And as important and powerful as this process is, it's inescapably simple.

The most important fact is this: regardlessof the languageyou use, the type of application you build
(web, mobile, JSONAPI) or the developmentphilosophy you follow, the end goal of an application is
always to understand each request and create and return the appropriate response.

Symfony is architected to match this reality.

To learn more about the HTTP specification,read the original HTTP 1.1 RFC6 or the HTTP Bis7,
which is an activeeffort to clarify the original specification.A greattool to checkboth the request
and response headers while browsing is theLive HTTP Headers8 extension for Firefox.

Requests and Responses in PHP
So how do you interact with the "request"and createa "response"when using PHP?In reality, PHP
abstracts you a bit from the whole process:

1
2
3
4
5
6

$uri = $_SERVER['REQUEST_URI'];
$foo = $_GET['foo'];

header('Content-Type: text/html');
echo 'The URI requested is: ' . $uri ;
echo 'The value of the "foo" parameter is: ' . $foo;

As strangeasit sounds,this small application is in fact taking information from the HTTP requestand
using it to createan HTTP response.Insteadof parsingthe raw HTTP requestmessage,PHPprepares

4. https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

5. https://www.iana.org/assignments/media-types/media-types.xhtml

6. http://www.w3.org/Protocols/rfc2616/rfc2616.html

7. http://datatracker.ietf.org/wg/httpbis/

8. https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/

PDF brought to you by

generated on July 28, 2016

Chapter 1: Symfony and HTTP Fundamentals | 7

http://sensiolabs.com

Listing 1-5

Listing 1-6

superglobalvariablessuchas$_SERVERand $_GETthat contain all the information from the request.
Similarly, instead of returning the HTTP-formatted text response,you can use the PHP header()
function to createresponseheadersand simply print out the actual content that will be the content
portion of the response message. PHP will create a true HTTP response and return it to the client:

1
2
3
4
5
6
7

HTTP/1.1 200 OK
Date: Sat, 03 Apr 2011 02:14:33 GMT
Server: Apache/2.2.17 (Unix)
Content-Type: text/html

The URI requested is: /testing?foo=symfony
The value of the "foo" parameter is: symfony

Requests and Responses in Symfony
Symfonyprovidesan alternativeto the raw PHPapproachvia two classesthat allow you to interactwith
the HTTP request and response in an easier way.

Symfony Request Object

The Request9 classis a simple object-orientedrepresentationof the HTTP requestmessage.With it,
you have all the request information at your fingertips:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

use Symfony\Component\HttpFoundation\Request;

$request = Request:: createFromGlobals();

// the URI being requested (e.g. /about) minus any query parameters
$request->getPathInfo ();

// retrieve $_GET and $_POST variables respectively
$request->query->get('foo');
$request->request ->get('bar' , 'default value if bar does not exist');

// retrieve $_SERVER variables
$request->server ->get('HTTP_HOST');

// retrieves an instance of UploadedFile identified by foo
$request->files ->get('foo');

// retrieve a $_COOKIE value
$request->cookies->get('PHPSESSID');

// retrieve an HTTP request header, with normalized, lowercase keys
$request->headers->get('host');
$request->headers->get('content_type');

$request->getMethod(); // GET, POST, PUT, DELETE, HEAD
$request->getLanguages(); // an array of languages the client accepts

As a bonus, the Requestclassdoesa lot of work in the backgroundthat you'll neverneedto worry
about. For example,the isSecure() methodchecksthe threedifferent valuesin PHPthat canindicate
whether or not the user is connecting via a secured connection (i.e. HTTPS).

9. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html

PDF brought to you by

generated on July 28, 2016

Chapter 1: Symfony and HTTP Fundamentals | 8

http://sensiolabs.com

Listing 1-7

ParameterBags and Request Attributes

As seenabove,the $_GETand $_POSTvariablesareaccessiblevia the public query and request
propertiesrespectively.Eachof theseobjectsis a ParameterBag10 object,which hasmethodslike
get() 11, has() 12, all() 13 and more. In fact, everypublic property usedin the previousexample
is some instance of the ParameterBag.

The Requestclassalsohasa public attributes property, which holds specialdatarelatedto how
the application works internally. For the SymfonyFramework, the attributes holds the values
returned by the matchedroute, like _controller , id (if you havean {id} wildcard), and even
the nameof the matchedroute (_route). The attributes property existsentirely to be a place
where you can prepare and store context-specific information about the request.

Symfony Response Object

Symfonyalsoprovidesa Response14 class:a simplePHPrepresentationof an HTTP responsemessage.
This allows your application to usean object-orientedinterfaceto construct the responsethat needsto
be returned to the client:

1
2
3
4
5
6
7
8
9

10
11
12

use Symfony\Component\HttpFoundation\Response;

$response = new Response();

$response->setContent ('<html><body><h1>Hello world!</h1></body></html>');
$response->setStatusCode(Response:: HTTP_OK);

// set a HTTP response header
$response->headers->set ('Content-Type' , 'text/html');

// print the HTTP headers followed by the content
$response->send();

There are also special classes to make certain types of responses easier to create:

¥ JsonResponse;
¥ BinaryFileResponse(for streaming files and sending file downloads);
¥ StreamedResponse(for streaming any other large responses);

The Request and Responseclassesare part of a standalonecomponent called symfony/http-
foundationthat yo canusein any PHPproject. This alsocontainsclassesfor handling sessions,file
uploads and more.

If Symfonyofferednothing else,you would alreadyhavea toolkit for easilyaccessingrequestinformation
and an object-orientedinterfacefor creatingthe response.Evenasyou learnthe manypowerful features
in Symfony,keepin mind that the goalof your application is alwaysto interpreta requestandcreatethe
appropriate response based on your application logic.

10. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html

11. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#method_get

12. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#method_has

13. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ParameterBag.html#method_all

14. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html

PDF brought to you by

generated on July 28, 2016

Chapter 1: Symfony and HTTP Fundamentals | 9

http://sensiolabs.com

Listing 1-8

Listing 1-9

The Journey from the Request to the Response
Like HTTP itself, the Requestand Responseobjectsarepretty simple.The hard part of building an
application is writing what comesin between.In other words, the real work comesin writing the code
that interprets the request information and creates the response.

Your application probably doesmany things, like sendingemails,handling form submissions,saving
things to a database,renderingHTML pagesandprotectingcontentwith security.How canyou manage
all of this and still keep your code organized and maintainable?

Symfony was created to solve these problems so that you don't have to.

The Front Controller

Traditionally, applications were built so that each "page" of a site was its own physical file:

1
2
3

index.php
contact.php
blog.php

There are severalproblems with this approach, including the inflexibility of the URLs (what if you
wantedto changeblog.php to news.phpwithout breakingall of your links?)andthe fact that eachfile
mustmanually include somesetof corefilesso that security,databaseconnectionsand the "look" of the
site can remain consistent.

A much better solution is to usea front controller: a singlePHPfile that handleseveryrequestcoming
into your application. For example:

/index.php executesindex.php

/index.php/contact executesindex.php

/index.php/blog executesindex.php

By using rewrite rules in your webserverconfiguration, the index.php won't be neededand you
will have beautiful, clean URLs (e.g./show).

Now, everyrequestis handledexactlythe sameway. Insteadof individual URLsexecutingdifferent PHP
files, the front controller is alwaysexecuted,and the routing of different URLsto different partsof your
application is doneinternally. This solvesboth problemswith the original approach.Almost all modern
web apps do this - including apps like WordPress.

Stay Organized

Insideyour front controller, you haveto figureout which codeshouldbeexecutedandwhat the content
to return shouldbe.To figure this out, you'll needto checkthe incomingURI andexecutedifferent parts
of your code depending on that value. This can get ugly quickly:

1
2
3
4
5
6
7
8
9

10

// index.php
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;

$request = Request:: createFromGlobals();
$path = $request->getPathInfo (); // the URI path being requested

if (in_array ($path, array ('' , '/'))) {
$response = new Response('Welcome to the homepage.');

} elseif ('/contact' === $path) {

PDF brought to you by

generated on July 28, 2016

Chapter 1: Symfony and HTTP Fundamentals | 10

http://sensiolabs.com

Listing 1-10

11
12
13
14
15

$response = new Response('Contact us');
} else {

$response = new Response('Page not found.' , Response:: HTTP_NOT_FOUND);
}
$response->send();

Solving this problem can be difficult. Fortunately it'sexactlywhat Symfony is designed to do.

The Symfony Application Flow

When you let Symfonyhandleeachrequest,life is much easier.Symfonyfollows the samesimplepattern
for every request:

Incoming requestsare interpreted by the Routingcomponentand passedto PHP functions that return
Responseobjects.

Each"page"of your site is defined in a routing configuration file that mapsdifferent URLs to different
PHPfunctions.The job of eachPHPfunction, calledacontroller, is to useinformation from the request-
alongwith manyother tools Symfonymakesavailable- to createandreturn aResponseobject. In other
words, the controller is whereyour code goes: it's where you interpret the request and create a response.

It's that easy! To review:

¥ Each request executes the same, single file (called a "front controller");
¥ The front controller boots Symfony, and passes it request information;
¥ The router matchesthe incoming URL to a specificroute and returns information about the route,

including the controller (i.e. function) that should be executed;
¥ The controller (function) is executed:this is whereyour codecreatesand returns the appropriate

Responseobject;
¥ The HTTP headers and content of theResponseobject are sent back to the client.

A Symfony Request in Action

Without diving into too muchdetail,hereis this processin action.Supposeyou want to adda /contact
page to your Symfony application. First, start by adding an entry for /contact to your routing
configuration file:

1
2
3
4

app/config/routing.yml
contact :

path: /contact
defaults : { _controller : AppBundle: Main: contact }

PDF brought to you by

generated on July 28, 2016

Chapter 1: Symfony and HTTP Fundamentals | 11

http://sensiolabs.com

Listing 1-11

When someonevisitsthe /contact page,this route is matched,andthe specifiedcontroller is executed.
As you'll learn in the routing chapter, the AppBundle:Main:contact string is a short syntax that
points to aspecificcontroller - contactAction() - insideacontroller classcalled- MainController :

1
2
3
4
5
6
7
8
9

10
11
12

// src/AppBundle/Controller/MainController.php
namespaceAppBundle\Controller ;

use Symfony\Component\HttpFoundation\Response;

class MainController
{

public function contactAction ()
{

return new Response('<h1>Contact us!</h1>');
}

}

In this example,the controller createsaResponse15 objectwith the HTML <h1>Contact us!</h1> .
In theControllerchapter, you'll learnhow acontroller canrendertemplates,allowing your "presentation"
code(i.e. anything that actually writes out HTML) to live in a separatetemplatefile. This freesup the
controller to worry only about the hard stuff: interactingwith the database,handling submitteddata,or
sending email messages.

Symfony: Build your App, not your Tools
You now know that the goalof any app is to interpret eachincoming requestand createan appropriate
response.As an application grows, it becomesmore difficult to keep your code organized and
maintainable.Invariably, the samecomplextaskskeepcomingup overand overagain:persistingthings
to the database,renderingand reusingtemplates,handling form submissions,sendingemails,validating
user input and handling security.

The goodnewsis that noneof theseproblemsis unique.Symfonyprovidesa frameworkfull of tools that
allow you to build your application, not your tools. With Symfony,nothing is imposedon you: you're
free to use the full Symfony Framework, or just one piece of Symfony all by itself.

Standalone Tools: The SymfonyComponents

Sowhat is Symfony?First, Symfonyis a collection of over twenty independentlibrariesthat canbeused
inside any PHP project. Theselibraries, called the SymfonyComponents, contain somethinguseful for
almost any situation, regardless of how your project is developed. To name a few:
HttpFoundation

Contains the Request and Responseclasses,as well as other classesfor handling sessionsand file
uploads.

Routing
Powerfuland fastrouting systemthat allowsyou to mapaspecificURI (e.g./contact) to information
about how that requestshouldbehandled(e.g.that the contactAction() controller methodshouldbe
executed).

Form
A full-featured and flexible framework for creating forms and handling form submissions.

15. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html

PDF brought to you by

generated on July 28, 2016

Chapter 1: Symfony and HTTP Fundamentals | 12

http://sensiolabs.com

Validator 16

A systemfor creating rules about data and then validating whether or not user-submitteddata
follows those rules.

Templating
A toolkit for renderingtemplates,handling templateinheritance(i.e. a templateis decoratedwith a
layout) and performing other common template tasks.

Security
A powerful library for handling all types of security inside an application.

Translation
A framework for translating strings in your application.

Eachone of thesecomponentsis decoupledand canbe usedin any PHPproject, regardlessof whether
or not you usethe SymfonyFramework.Everypart is made to be usedif neededand replacedwhen
necessary.

The Full Solution: The SymfonyFramework

Sothen, what is the SymfonyFramework?The SymfonyFrameworkis a PHPlibrary that accomplishes
two distinct tasks:

1. Providesa selectionof components(i.e. the SymfonyComponents)and third-party libraries
(e.g.Swift Mailer17 for sending emails);

2. Provides sensible configuration and a "glue" library that ties all of these pieces together.

The goal of the framework is to integrate many independent tools in order to provide a consistent
experiencefor the developer.Eventhe framework itself is a Symfonybundle (i.e. a plugin) that can be
configured or replaced entirely.

Symfonyprovidesa powerful setof tools for rapidly developingweb applicationswithout imposing on
your application. Normal userscan quickly start developmentby using a Symfonydistribution, which
provides a project skeleton with sensible defaults. For more advanced users, the sky is the limit.

16. https://github.com/symfony/validatorhttps://github.com/symfony/validator

17. http://swiftmailer.org/

PDF brought to you by

generated on July 28, 2016

Chapter 1: Symfony and HTTP Fundamentals | 13

http://sensiolabs.com

Listing 2-1

Chapter 2

Symfony versus Flat PHP

Why is Symfony better than just opening up a file and writing flat PHP?

If you've never used a PHP framework, aren't familiar with the Model-View-Controller1 (MVC)
philosophy,or just wonderwhat all the hypeis aroundSymfony,this chapteris for you. Insteadof telling
you that Symfonyallows you to developfaster and better software than with flat PHP, you'll seefor
yourself.

In this chapter,you'll write a simpleapplication in flat PHP,and then refactor it to be more organized.
You'll travel through time, seeingthe decisionsbehind why web developmenthasevolvedover the past
several years to where it is now.

By the end,you'll seehow Symfonycanrescueyou from mundanetasksand let you takebackcontrol of
your code.

A Simple Blog in Flat PHP
In this chapter,you'll build the token blog applicationusingonly flat PHP.To begin,createa singlepage
that displaysblog entriesthat havebeenpersistedto the database.Writing in flat PHPis quick anddirty:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

<?php
// index.php
$link = new PDO("mysql:host=localhost;dbname=blog_db" , 'myuser' , 'mypassword');

$result = $link ->query('SELECT id, title FROM post');
?>

<!DOCTYPE html>
<html>

<head>
<title> List of Posts </title>

</head>
<body>

<h1>List of Posts </h1>

<?php while ($row = $result ->fetch (PDO:: FETCH_ASSOC)) : ?>

1. https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

PDF brought to you by

generated on July 28, 2016

Chapter 2: Symfony versus Flat PHP | 14

http://sensiolabs.com

Listing 2-2

Listing 2-3

18
19
20
21
22
23
24
25
26
27
28
29

<a href= "/show.php?id= <?= $row['id'] ?>" >
<?= $row['title'] ?>

<?php endwhile ?>

</body>

</html>

<?php
$link = null ;
?>

That'squick to write, fast to execute,and, asyour app grows,impossibleto maintain. Thereareseveral
problems that need to be addressed:

¥ No error-checking : What if the connection to the database fails?
¥ Poor organization : If the application grows, this single file will become increasingly

unmaintainable.Where should you put codeto handlea form submission?How can you validate
data? Where should code go for sending emails?

¥ Difficult to reuse code: Sinceeverythingis in one file, there'sno way to reuseany part of the
application for other "pages" of the blog.

Another problem not mentionedhere is the fact that the databaseis tied to MySQL. Though not
coveredhere, Symfonyfully integratesDoctrine2, a library dedicatedto databaseabstractionand
mapping.

Isolating the Presentation

The codecan immediatelygain from separatingthe application "logic" from the codethat preparesthe
HTML "presentation":

1
2
3
4
5
6
7
8
9

10
11
12
13
14

// index.php
$link = new PDO("mysql:host=localhost;dbname=blog_db" , 'myuser' , 'mypassword');

$result = $link ->query('SELECT id, title FROM post');

$posts = array ();
while ($row = $result ->fetch (PDO:: FETCH_ASSOC)) {

$posts[] = $row;
}

$link = null ;

// include the HTML presentation code
require 'templates/list.php' ;

The HTML codeis now storedin a separatefile templates/ list.php , which is primarily an HTML
file that uses a template-like PHP syntax:

1
2
3
4
5
6
7
8
9

10

<!-- templates/list.php -->
<!DOCTYPE html>
<html>

<head>
<title> List of Posts </title>

</head>
<body>

<h1>List of Posts </h1>

<?php foreach ($posts as $post) : ?>

2. http://www.doctrine-project.org

PDF brought to you by

generated on July 28, 2016

Chapter 2: Symfony versus Flat PHP | 15

http://sensiolabs.com

Listing 2-4

Listing 2-5

11
12
13
14
15
16
17
18
19

<a href= "/show.php?id= <?= $post['id'] ?>" >

<?= $post['title'] ?>

<?php endforeach ?>

</body>

</html>

By convention,the file that containsall the application logic - index.php - is known asa "controller".
The term controller is a word you'll heara lot, regardlessof the languageor frameworkyou use.It refers
simply to the area ofyour code that processes user input and prepares the response.

In this case,the controller preparesdata from the databaseand then includesa templateto presentthat
data.With the controller isolated,you could easilychangejust the templatefile if you neededto render
the blog entries in some other format (e.g.list.json.php for JSON format).

Isolating the Application (Domain) Logic

Sofar the applicationcontainsonly onepage.But what if a secondpageneededto usethe samedatabase
connection,or eventhe samearrayof blog posts?Refactorthe codeso that the corebehaviorand data-
access functions of the application are isolated in a new file calledmodel.php:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

// model.php
function open_database_connection()
{

$link = new PDO("mysql:host=localhost;dbname=blog_db" , 'myuser' , 'mypassword');

return $link ;
}

function close_database_connection(&$link)
{

$link = null ;
}

function get_all_posts ()
{

$link = open_database_connection();

$result = $link ->query('SELECT id, title FROM post');

$posts = array ();
while ($row = $result ->fetch (PDO:: FETCH_ASSOC)) {

$posts[] = $row;
}
close_database_connection($link);

return $posts;
}

The filenamemodel.phpis usedbecausethe logic anddataaccessof an application is traditionally
known asthe "model" layer. In a well-organizedapplication, the majority of the coderepresenting
your "businesslogic" should live in the model (asopposedto living in a controller). And unlike in
this example, only a portion (or none) of the model is actually concerned with accessing a database.

The controller (index.php) is now very simple:

1
2
3

// index.php
require_once 'model.php' ;

PDF brought to you by

generated on July 28, 2016

Chapter 2: Symfony versus Flat PHP | 16

http://sensiolabs.com

Listing 2-6

Listing 2-7

4
5
6

$posts = get_all_posts ();

require 'templates/list.php' ;

Now, the soletaskof the controller is to getdatafrom the model layerof the application(the model)and
to call a templateto renderthat data.This is a verysimpleexampleof the model-view-controllerpattern.

Isolating the Layout

At this point, the application hasbeenrefactoredinto three distinct piecesoffering variousadvantages
and the opportunity to reuse almost everything on different pages.

The only part of the codethat can'tbereusedis the pagelayout. Fix that by creatinganew templates/
layout.php file:

1
2
3
4
5
6
7
8
9

10

<!-- templates/layout.php -->
<!DOCTYPE html>
<html>

<head>
<title> <?= $title ?></title>

</head>
<body>

<?= $content ?>
</body>

</html>

The template templates/ list.php can now be simplified to "extend" the templates/
layout.php :

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

<!-- templates/list.php -->
<?php $title = 'List of Posts' ?>

<?php ob_start () ?>
<h1>List of Posts </h1>

<?php foreach ($posts as $post) : ?>

<a href= "/show.php?id= <?= $post['id'] ?>" >
<?= $post['title'] ?>

<?php endforeach ?>

<?php $content = ob_get_clean() ?>

<?php include 'layout.php' ?>

You now havea setupthat will allow you to reusethe layout. Unfortunately, to accomplishthis, you're
forced to usea few ugly PHP functions (ob_start() , ob_get_clean()) in the template.Symfony
usesaTemplatingcomponentthat allowsthis to beaccomplishedcleanlyandeasily.You'll seeit in action
shortly.

Adding a Blog "show" Page
The blog "list" pagehasnow beenrefactoredsothat the codeis better-organizedand reusable.To prove
it, add a blog "show" page, which displays an individual blog post identified by anid query parameter.

To begin,createa newfunction in the model.phpfile that retrievesan individual blog resultbasedon a
given id:

PDF brought to you by

generated on July 28, 2016

Chapter 2: Symfony versus Flat PHP | 17

http://sensiolabs.com

Listing 2-8

Listing 2-9

Listing 2-10

Listing 2-11

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// model.php
function get_post_by_id ($id)
{

$link = open_database_connection();

$query = 'SELECT created_at, title, body FROM post WHERE id=:id' ;
$statement = $link ->prepare($query);
$statement->bindValue(':id' , $id , PDO:: PARAM_INT);
$statement->execute();

$row = $statement->fetch (PDO:: FETCH_ASSOC);

close_database_connection($link);

return $row;
}

Next, create a new file calledshow.php- the controller for this new page:

1
2
3
4
5
6

// show.php
require_once 'model.php' ;

$post = get_post_by_id ($_GET['id']);

require 'templates/show.php' ;

Finally, create the new template file -templates/show.php - to render the individual blog post:

1
2
3
4
5
6
7
8
9

10
11
12
13

<!-- templates/show.php -->
<?php $title = $post['title'] ?>

<?php ob_start () ?>
<h1><?= $post['title'] ?></h1>

<div class= "date" ><?= $post['created_at'] ?></div>
<div class= "body">

<?= $post['body'] ?>
</div>

<?php $content = ob_get_clean() ?>

<?php include 'layout.php' ?>

Creating the secondpageis now very easyand no code is duplicated. Still, this pageintroduceseven
more lingeringproblemsthat a frameworkcansolvefor you. For example,a missingor invalid id query
parameterwill causethe pageto crash.It would be better if this causeda 404 pageto be rendered,but
this can't really be done easily yet.

Another major problem is that eachindividual controller file must include the model.phpfile. What if
eachcontroller file suddenlyneededto include an additional file or perform someother global task (e.g.
enforcesecurity)?Asit standsnow, that codewould needto beaddedto everycontroller file. If you forget
to include something in one file, hopefully it doesn't relate to security...

A "Front Controller" to the Rescue
The solution is to usea front controller: a singlePHPfile through which all requestsareprocessed.With
a front controller, the URIs for the application change slightly, but start to become more flexible:

1
2
3
4
5

Without a front controller
/index.php => Blog post list page (index.php executed)
/show.php => Blog post show page (show.php executed)

With index.php as the front controller

PDF brought to you by

generated on July 28, 2016

Chapter 2: Symfony versus Flat PHP | 18

http://sensiolabs.com

Listing 2-12

Listing 2-13

6
7

/index.php => Blog post list page (index.php executed)
/index.php/show => Blog post show page (index.php executed)

By using rewrite rules in your webserverconfiguration, the index.php won't be neededand you
will have beautiful, clean URLs (e.g./show).

When using a front controller, a singlePHP file (index.php in this case)renderseveryrequest.For
the blog post show page,/index.php/ showwill actually executethe index.php file, which is now
responsiblefor routing requestsinternally basedon the full URI. Asyou'll see,a front controller is a very
powerful tool.

Creating the Front Controller

You're about to take a big step with the application. With one file handling all requests,you can
centralize things such as security handling, configuration loading, and routing. In this application,
index.php must now be smart enoughto render the blog post list pageor the blog post show page
based on the requested URI:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// index.php

// load and initialize any global libraries
require_once 'model.php' ;
require_once 'controllers.php' ;

// route the request internally
$uri = parse_url ($_SERVER['REQUEST_URI'], PHP_URL_PATH);
if ('/index.php' === $uri) {

list_action ();
} elseif ('/index.php/show' === $uri && isset ($_GET['id'])) {

show_action($_GET['id']);
} else {

header('HTTP/1.1 404 Not Found');
echo '<html><body><h1>Page Not Found</h1></body></html>';

}

For organization,both controllers (formerly index.php and show.php) are now PHPfunctions and
each has been moved into a separate file namedcontrollers.php :

1
2
3
4
5
6
7
8
9

10
11
12

// controllers.php
function list_action ()
{

$posts = get_all_posts ();
require 'templates/list.php' ;

}

function show_action($id)
{

$post = get_post_by_id ($id);
require 'templates/show.php' ;

}

As a front controller, index.php has taken on an entirely new role, one that includes loading the
core libraries and routing the application so that one of the two controllers (the list_action() and
show_action() functions) is called. In reality, the front controller is beginningto look and act a lot
like how Symfony handles and routes requests.

But but carefulnot to confusethe terms front controllerand controller. Your app will usually havejust
onefront controller, which boots your code. You will havemanycontroller functions: one for each page.

PDF brought to you by

generated on July 28, 2016

Chapter 2: Symfony versus Flat PHP | 19

http://sensiolabs.com

Listing 2-14

Listing 2-15

Listing 2-16

Another advantageof a front controller is flexible URLs.Notice that the URL to the blog post show
pagecould be changedfrom /show to /read by changingcode in only one location. Before,an
entire file needed to be renamed. In Symfony, URLs are even more flexible.

By now, the application hasevolvedfrom a singlePHPfile into a structure that is organizedand allows
for codereuse.You should be happier,but far from satisfied.For example,the routing systemis fickle,
and wouldn't recognizethat the list page- /index.php - should be accessiblealso via / (if Apache
rewrite ruleswereadded).Also, insteadof developingthe blog, a lot of time is beingspentworking on
the "architecture"of the code(e.g. routing, calling controllers, templates,etc.). More time will needto
be spent to handle form submissions,input validation, logging and security.Why should you haveto
reinvent solutions to all these routine problems?

Add a Touch of Symfony

Symfonyto the rescue.Beforeactually using Symfony,you needto download it. This can be done by
using Composer3, which takes care of downloading the correct version and all its dependenciesand
providesan autoloader.An autoloaderis a tool that makesit possibleto start usingPHPclasseswithout
explicitly including the file containing the class.

In your root directory, create acomposer.json file with the following content:

1
2
3
4
5
6
7
8

{
"require" : {

"symfony/symfony": "3.1.*"
},
"autoload" : {

"files" : ["model.php" , "controllers.php"]
}

}

Next, downloadComposer4 and then run the following command,which will download Symfonyinto a
vendor/ directory:

1 $ composer install

Besidedownloading your dependencies,Composergeneratesa vendor/ autoload.php file, which
takescareof autoloadingfor all the files in the SymfonyFrameworkaswell asthe filesmentionedin the
autoload section of yourcomposer.json.

Core to Symfony'sphilosophy is the ideathat an application'smain job is to interpret eachrequestand
return aresponse.To this end,Symfonyprovidesboth aRequest5 andaResponse6 class.Theseclasses
are object-orientedrepresentationsof the raw HTTP requestbeing processedand the HTTP response
being returned. Use them to improve the blog:

1
2
3
4
5
6
7
8
9

10

// index.php
require_once 'vendor/autoload.php' ;

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;

$request = Request:: createFromGlobals();

$uri = $request->getPathInfo ();
if ('/' === $uri) {

3. https://getcomposer.org

4. https://getcomposer.org/download/

5. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html

6. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html

PDF brought to you by

generated on July 28, 2016

Chapter 2: Symfony versus Flat PHP | 20

http://sensiolabs.com

Listing 2-17

11
12
13
14
15
16
17
18
19
20

$response = list_action ();
} elseif ('/show' === $uri && $request->query->has('id')) {

$response = show_action($request->query->get('id'));
} else {

$html = '<html><body><h1>Page Not Found</h1></body></html>';
$response = new Response($html, Response:: HTTP_NOT_FOUND);

}

// echo the headers and send the response
$response->send();

The controllersarenow responsiblefor returning a Responseobject.To makethis easier,you canadd
a new render_template() function, which, incidentally, actsquite a bit like the Symfonytemplating
engine:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

// controllers.php
use Symfony\Component\HttpFoundation\Response;

function list_action ()
{

$posts = get_all_posts ();
$html = render_template ('templates/list.php' , array ('posts' => $posts));

return new Response($html);
}

function show_action($id)
{

$post = get_post_by_id ($id);
$html = render_template ('templates/show.php' , array ('post' => $post));

return new Response($html);
}

// helper function to render templates
function render_template ($path, array $args)
{

extract ($args);
ob_start ();
require $path;
$html = ob_get_clean();

return $html;
}

By bringing in a small part of Symfony, the application is more flexible and reliable. The Request
provides a dependable way to access information about the HTTP request. Specifically, the
getPathInfo() 7 method returns a cleanedURI (alwaysreturning /show and never /index.php/
show). So,evenif the usergoesto /index.php/ show, the application is intelligent enoughto route the
request throughshow_action() .

The Responseobject givesflexibility when constructing the HTTP response,allowing HTTP headers
and content to beaddedvia an object-orientedinterface.And while the responsesin this applicationare
simple, this flexibility will pay dividends as your application grows.

The Sample Application in Symfony

The blog hascomea longway, but it still containsa lot of codefor sucha simpleapplication. Along the
way, you'vemadea simplerouting systemand a methodusingob_start() andob_get_clean() to
render templates.If, for somereason,you neededto continue building this "framework" from scratch,

7. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html#method_getPathInfo

PDF brought to you by

generated on July 28, 2016

Chapter 2: Symfony versus Flat PHP | 21

http://sensiolabs.com

Listing 2-18

Listing 2-19

Listing 2-20

you could at leastuseSymfony'sstandaloneRoutingand Templatingcomponents,which alreadysolve
these problems.

Insteadof re-solvingcommonproblems,you canlet Symfonytakecareof them for you. Here'sthe same
sample application, now built in Symfony:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

// src/AppBundle/Controller/BlogController.php
namespaceAppBundle\Controller ;

use Symfony\Bundle\FrameworkBundle\Controller\Controller ;

class BlogController extends Controller
{

public function listAction ()
{

$posts = $this ->get('doctrine')
->getManager()
->createQuery('SELECT p FROM AppBundle:Post p')
->execute();

return $this ->render('Blog/list.html.php' , array ('posts' => $posts));
}

public function showAction($id)
{

$post = $this ->get('doctrine')
->getManager()
->getRepository ('AppBundle:Post')
->find ($id);

if (! $post) {
// cause the 404 page not found to be displayed
throw $this ->createNotFoundException();

}

return $this ->render('Blog/show.html.php' , array ('post' => $post));
}

}

Notice, both controller functions now live insidea "controller class".This is a niceway to group related
pages. The controller functions are also sometimes calledactions.

The two controllers (or actions) are still lightweight. Eachusesthe Doctrine ORM library to retrieve
objectsfrom the databaseand the Templatingcomponentto rendera templateand return a Response
object. The listlist.php template is now quite a bit simpler:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

<!-- app/Resources/views/Blog/list.html.php -->
<?php $view->extend('layout.html.php') ?>

<?php $view['slots'] ->set ('title' , 'List of Posts') ?>

<h1>List of Posts </h1>

<?php foreach ($posts as $post) : ?>

<a href= " <?php echo $view['router'] ->path(
'blog_show' ,
array ('id' => $post->getId ())

) ?>" >
<?= $post->getTitle () ?>

<?php endforeach ?>

The layout.php file is nearly identical:

PDF brought to you by

generated on July 28, 2016

Chapter 2: Symfony versus Flat PHP | 22

http://sensiolabs.com

Listing 2-21

Listing 2-22

1
2
3
4
5
6
7
8
9

10
11
12
13

<!-- app/Resources/views/layout.html.php -->
<!DOCTYPE html>
<html>

<head>
<title> <?= $view['slots'] ->output (

'title' ,
'Default title'

) ?></title>
</head>
<body>

<?= $view['slots'] ->output ('_content') ?>
</body>

</html>

The showshow.phptemplateis left asan exercise:updating it shouldbereallysimilar to updating
the list.php template.

When Symfony'sengine(calledthe Kernel)bootsup, it needsamapsothat it knowswhich controllersto
executebasedon the requestinformation. A routing configurationmap - app/config/ routing.yml
- provides this information in a readable format:

1
2
3
4
5
6
7
8

app/config/routing.yml
blog_list :

path: /blog
defaults : { _controller : AppBundle: Blog: list }

blog_show:
path: /blog/show/{id}
defaults : { _controller : AppBundle: Blog: show }

Now that Symfonyis handlingall the mundanetasks,the front controller web/app.php is deadsimple.
And since it does so little, you'll never have to touch it:

1
2
3
4
5
6
7
8

// web/app.php
require_once __DIR__. '/../app/bootstrap.php' ;
require_once __DIR__. '/../app/AppKernel.php' ;

use Symfony\Component\HttpFoundation\Request;

$kernel = new AppKernel('prod' , false);
$kernel ->handle(Request:: createFromGlobals()) ->send();

The front controller'sonly job is to initialize Symfony'sengine(calledthe Kernel)and passit a Request
object to handle. The Symfony core asks the router to inspect the request.The router matchesthe
incoming URL to a specificroute and returns information about the route, including the controller that
should beexecuted.The correctcontroller from the matchedroute is executedand your codeinsidethe
controller createsand returns the appropriateResponseobject. The HTTP headersand content of the
Responseobject are sent back to the client.

It's a beautiful thing.

PDF brought to you by

generated on July 28, 2016

Chapter 2: Symfony versus Flat PHP | 23

http://sensiolabs.com

Listing 2-23

Listing 2-24

Better Templates

If you chooseto use it, Symfony comesstandard with a templating enginecalled Twig8 that makes
templatesfasterto write and easierto read.It meansthat the sampleapplicationcould contain evenless
code! Take, for example, rewritinglist.html.php template in Twig would look like this:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

{# app/Resources/views/blog/list.html.twig #}
{% extends "layout.html.twig" %}

{% block title %}List of Posts {% endblock %}

{% block body %}
<h1>List of Posts </h1>

{% for post in posts %}

{{ post.title }}

{% endfor %}

{% endblock %}

And rewriting layout.html.php template in Twig would look like this:

1
2
3
4
5
6
7
8
9

10

{# app/Resources/views/layout.html.twig #}
<!DOCTYPE html>
<html>

<head>
<title> {% block title %}Default title {% endblock %}</title>

</head>
<body>

{% block body %}{%endblock %}
</body>

</html>

Twig is well-supportedin Symfony.And while PHPtemplateswill alwaysbesupportedin Symfony,the
manyadvantagesof Twig will continueto bediscussed.For moreinformation, seethe templatingchapter.

Where Symfony Delivers
In the upcoming chapters,you'll learn more about how eachpiece of Symfonyworks and how you
can organizeyour project. For now, celebrateat how migrating the blog from flat PHPto Symfonyhas
improved life:

8. http://twig.sensiolabs.org

PDF brought to you by

generated on July 28, 2016

Chapter 2: Symfony versus Flat PHP | 24

http://sensiolabs.com

¥ Your application now hasclear and consistently organized code (though Symfonydoesn'tforce
you into this). This promotesreusability and allows for new developersto be productive in your
project more quickly;

¥ 100%of the codeyou write is for your application. You don't need to develop or maintain low-
level utilities such as autoloading,routing, or renderingcontrollers;

¥ Symfonygivesyou accessto open source tools such asDoctrine9 and the Templating, Security,
Form, Validator10 andTranslationcomponents (to name a few);

¥ The application now enjoysfully-flexible URLs thanks to the Routing component;
¥ Symfony'sHTTP-centric architecturegivesyou accessto powerful tools such as HTTP caching

poweredby Symfony's internal HTTP cache or more powerful tools such asVarnish11. This is
covered in a later chapter all aboutcaching.

And perhapsbestof all, by using Symfony,you now haveaccessto a whole setof high-quality open
source tools developed by the Symfony community ! A good selectionof Symfonycommunity tools
can be found onKnpBundles.com12.

Learn more from the Cookbook
¥ How to Use PHP instead of Twig for Templates
¥ How to Define Controllers as Services

9. http://www.doctrine-project.org

10. https://github.com/symfony/validator

11. https://www.varnish-cache.org/

12. http://knpbundles.com/

PDF brought to you by

generated on July 28, 2016

Chapter 2: Symfony versus Flat PHP | 25

/var/www/symfony.com/bin/../var/docs/build/symfony/master/book/http_cache.html
/var/www/symfony.com/bin/../var/docs/build/symfony/master/book/http_cache.html
http://sensiolabs.com

Listing 3-1

Chapter 3

Installing and Configuring Symfony

Welcome to Symfony!Starting a new Symfonyproject is easy.In fact, you'll haveyour first working
Symfony application up and running in just a few short minutes.

Do you prefer video tutorials? Checkout the Joyful Developmentwith Symfony1 screencastseriesfrom
KnpUniversity.

To makecreatingnew applicationsevensimpler,Symfonyprovidesan installer. Downloading it is your
first step.

Installing the Symfony Installer
Using the Symfony Installer is the only recommendedway to createnew Symfonyapplications.This
installer is a PHPapplication that hasto be installedin your systemonly onceand then it cancreateany
number of Symfony applications.

The installer requiresPHP5.4 or higher. If you still usethe legacyPHP5.3 version,you cannotuse
the SymfonyInstaller.Readthe CreatingSymfonyApplicationswithout the Installersectionto learn
how to proceed.

Depending on your operating system, the installer must be installed in different ways.

Linux and Mac OS X Systems

Open your command console and execute the following commands:

1
2

$ sudo curl -LsS https://symfony.com/installer -o /usr/local/bin/symfony
$ sudo chmod a+x /usr/local/bin/symfony

This will create a globalsymfonycommand in your system.

1. http://knpuniversity.com/screencast/symfony

PDF brought to you by

generated on July 28, 2016

Chapter 3: Installing and Configuring Symfony | 26

http://sensiolabs.com

Listing 3-2

Listing 3-3

Listing 3-4

Listing 3-5

Windows Systems

Open your command console and execute the following command:

1 c: \> php -r "readfile('https://symfony.com/installer');" > symfony

Then, move the downloadedsymfonyfile to your project's directory and execute it as follows:

1
2

c: \> move symfony c:\p rojects
c: \p rojects \> php symfony

Creating the Symfony Application
Once the Symfony Installer is available, create your first Symfony application with thenewcommand:

1
2
3
4
5
6

Linux, Mac OS X
$ symfony new my_project_name

Windows
c: \> cd projects/
c: \p rojects \> php symfony new my_project_name

This commandcreatesa new directory called my_project_name/ that containsa fresh new project
basedon the most recentstableSymfonyversionavailable.In addition, the installerchecksif your system
meetsthe technical requirementsto executeSymfonyapplications.If not, you'll seethe list of changes
needed to meet those requirements.

For securityreasons,all Symfonyversionsaredigitally signedbeforedistributing them. If you want
to verify the integrity of any Symfony version, follow the stepsexplained in this post2.

If the installer doesn't work for you or doesn't output anything, make sure that the PHP Phar
extension3 is installed and enabled on your computer.

Basing your Project on a Specific Symfony Version

In caseyour project needsto be basedon a specificSymfonyversion,usethe optional secondargument
of thenewcommand:

1
2
3
4
5
6
7
8
9

10
11

use the most recent version in any Symfony branch
$ symfony new my_project_name 2.8
$ symfony new my_project_name 3.1

use a specific Symfony version
$ symfony new my_project_name 2.8.1
$ symfony new my_project_name 3.0.2

use a beta or RC version (useful for testing new Symfony versions)
$ symfony new my_project 3.0.0-BETA1
$ symfony new my_project 3.1.0-RC1

The installer also supports a specialversion called lts which installs the most recent SymfonyLTS
versionavailable:

2. http://fabien.potencier.org/signing-project-releases.html

3. http://php.net/manual/en/intro.phar.php

PDF brought to you by

generated on July 28, 2016

Chapter 3: Installing and Configuring Symfony | 27

http://sensiolabs.com

Listing 3-6

Listing 3-7

Listing 3-8

Listing 3-9

1 $ symfony new my_project_name lts

Readthe SymfonyReleaseprocessto betterunderstandwhy thereareseveralSymfonyversionsandwhich
one to use for your projects.

Creating Symfony Applications without the Installer
If you still use PHP 5.3, or if you can't executethe installer for any reason,you can createSymfony
applications using the alternative installation method based onComposer4.

Composeris the dependencymanagerused by modern PHP applications and it can also be used to
createnewapplicationsbasedon the SymfonyFramework.If you don't haveit installedglobally,start by
reading the next section.

Installing Composer Globally

Start with installing Composer globally.

Creating a Symfony Application with Composer

OnceComposeris installedon your computer,executethe create-project Composercommandto
create a new Symfony application based on its latest stable version:

1 $ composer create-project symfony/framework-standard-edition my_project_name

If you needto baseyour application on a specificSymfonyversion,provide that versionasthe second
argument of thecreate-project Composer command:

1 $ composer create-project symfony/framework-standard-edition my_project_name "3.1.*"

If your Internet connection is slow, you may think that Composeris not doing anything. If that's
your case,addthe -vvv flagto thepreviouscommandto displayadetailedoutput of everythingthat
Composer is doing.

Running the Symfony Application
Symfonyleveragesthe internal web serverprovided by PHPto run applicationswhile developingthem.
Therefore,running aSymfonyapplicationis amatterof browsingthe projectdirectoryandexecutingthis
command:

1
2

$ cd my_project_name/
$ php bin/console server:run

Then,openyour browserandaccessthe http://localhost:8000/ URL to seethe WelcomePageof
Symfony:

4. https://getcomposer.org/

PDF brought to you by

generated on July 28, 2016

Chapter 3: Installing and Configuring Symfony | 28

http://sensiolabs.com

Listing 3-10

Insteadof the WelcomePage,you may seea blank pageor an error page.This is causedby a directory
permissionmisconfiguration.Thereareseveralpossiblesolutionsdependingon your operatingsystem.
All of them are explained in theSetting up Permissionssection of this chapter.

PHP'sinternal web serveris great for developing,but should not be usedon production. Instead,use
Apache or Nginx. SeeConfiguring a Web Server.

PHP's internal web server is available in PHP 5.4 or higher versions.

When you arefinishedworking on your Symfonyapplication,you canstop the serverby pressingCtrl+C
from terminal.

Checking Symfony Application Configuration and Setup
Symfonyapplicationscomewith a visualserverconfigurationtesterto showif your environmentis ready
to use Symfony. Access the following URL to check your configuration:

1 http://localhost:8000/config.php

If there are any issues, correct them now before moving on.

PDF brought to you by

generated on July 28, 2016

Chapter 3: Installing and Configuring Symfony | 29

http://sensiolabs.com

Listing 3-11

Listing 3-12

Listing 3-13

Setting up Permissions

One common issuewhen installing Symfonyis that the var directory must be writable both by the
web serverand the commandline user.On a UNIX system,if your web serveruseris different from
your command line user who owns the files, you can try one of the following solutions.

1. Use the same user for the CLI and the web server

In developmentenvironments,it is a common practiceto usethe sameUNIX userfor the CLI and
the web serverbecauseit avoidsanyof thesepermissionsissueswhen settingup new projects.This
canbedoneby editing your webserverconfiguration(e.g.commonlyhttpd.conf or apache2.conffor
Apache)and settingits userto be the sameasyour CLI user(e.g.for Apache,updatethe Userand
Groupvalues).

If usedin a production environment,besurethis useronly haslimited privileges(no accessto
private dataor servers,launch of unsafebinaries,etc.) asa compromisedserverwould giveto
the hacker those privileges.

2. Using ACL on a system that supports chmod +a (MacOS X)

MacOSX allowsyou to usethechmod+acommand.This usesacommandto try to determineyour
web server user and set it asHTTPDUSER:

1
2
3
4
5

$ rm -rf var/cache/* var/logs/* var/sessions/*

$ HTTPDUSER=` ps axo user,comm | grep -E '[a]pache|[h]ttpd|[_]www|[w]ww-data|[n]ginx' | grep -v root |
head -1 | cut -d \ -f1 `
$ sudo chmod -R +a " $HTTPDUSERallow delete,write,append,file_inherit,directory_inherit" var
$ sudo chmod -R +a "`whoami` allow delete,write,append,file_inherit,directory_inherit" var

3. Using ACL on a system that supports setfacl (most Linux/BSD)

Most Linux and BSDdistributions don't support chmod+a, but do support anotherutility called
setfacl . You mayneedto enableACL support5 on your partition and install setfaclbeforeusingit.
This uses a command to try to determine your web server user and set it asHTTPDUSER:

1
2
3

$ HTTPDUSER=` ps axo user,comm | grep -E '[a]pache|[h]ttpd|[_]www|[w]ww-data|[n]ginx' | grep -v root |
head -1 | cut -d \ -f1 `
$ sudo setfacl -R -m u: " $HTTPDUSER" :rwX -m u: ` whoamì:rwX var
$ sudo setfacl -dR -m u: " $HTTPDUSER" :rwX -m u: ` whoamì:rwX var

If this doesn't work, try adding-n option.

setfacl isn't availableon NFS mount points. However, setting cacheand logs over NFS is
strongly not recommended for performance.

4. Without using ACL

If noneof thepreviousmethodswork for you, changetheumasksothat thecacheandlog directories
will be group-writable or world-writable (dependingif the web serveruserand the commandline
userare in the samegroup or not). To achievethis, put the following line at the beginningof the
bin/console , web/app.phpandweb/app_dev.phpfiles:

1
2
3
4
5

umask(0002); // This will let the permissions be 0775

// or

umask(0000); // This will let the permissions be 0777

5. https://help.ubuntu.com/community/FilePermissionsACLs

PDF brought to you by

generated on July 28, 2016

Chapter 3: Installing and Configuring Symfony | 30

http://sensiolabs.com

Listing 3-14

Listing 3-15

Listing 3-16

Note that using the ACL is recommendedwhen you haveaccessto them on your serverbecause
changing the umask is not thread-safe.

Updating Symfony Applications
At this point, you'vecreateda fully-functional Symfonyapplication in which you'll start to developyour
own project. A Symfonyapplication dependson a number of external libraries. Thesearedownloaded
into the vendor/ directory and they are managed exclusively by Composer.

Updating those third-party libraries frequently is a good practice to prevent bugs and security
vulnerabilities. Execute theupdate Composer command to update them all at once:

1
2

$ cd my_project_name/
$ composer update

Dependingon the complexity of your project, this update processcan take up to severalminutes to
complete.

Symfonyprovidesa command to check whether your project's dependenciescontain any known
security vulnerability:

1 $ php bin/console security:check

A good security practice is to executethis command regularly to be able to update or replace
compromised dependencies as soon as possible.

Installing the Symfony Demo Application
The Symfony Demo application is a fully-functional application that shows the recommendedway
to developSymfonyapplications.The application has beenconceivedas a learning tool for Symfony
newcomers and its source code contains tons of comments and helpful notes.

In order to download the Symfony Demo application, executethe democommand of the Symfony
Installer anywhere in your system:

1
2
3
4
5

Linux, Mac OS X
$ symfony demo

Windows
c: \p rojects \> php symfony demo

Once downloaded, enter into the symfony_demo/directory and run the PHP'sbuilt-in web server
executingthephp bin/ console server:run command.Accessto thehttp://localhost:8000
URL in your browser to start using the Symfony Demo application.

Installing a Symfony Distribution
Symfony project packages"distributions", which are fully-functional applications that include the
Symfonycore libraries, a selectionof useful bundles, a sensibledirectory structure and somedefault
configuration. In fact, when you createda Symfonyapplication in the previoussections,you actually
downloaded the default distribution provided by Symfony, which is calledSymfony Standard Edition6.

PDF brought to you by

generated on July 28, 2016

Chapter 3: Installing and Configuring Symfony | 31

http://sensiolabs.com

Listing 3-17

The Symfony StandardEdition is by far the most popular distribution and it's also the best choice
for developersstarting with Symfony.However, the SymfonyCommunity haspublishedother popular
distributions that you may use in your applications:

¥ The SymfonyCMF StandardEdition7 is the best distribution to get started with the Symfony
CMF8 project, which is a project that makesit easierfor developersto add CMS functionality to
applications built with the Symfony Framework.

¥ The SymfonyRESTEdition9 showshow to build an application that providesa RESTfulAPI using
the FOSRestBundle10 and several other related bundles.

Using Source Control
If you're using a versioncontrol systemlike Git11, you can safelycommit all your project'scode. The
reason is that Symfony applications already contain a.gitignore file specially prepared for Symfony.

For specificinstructions on how best to setup your project to be stored in Git, seeHow to Createand
Store a Symfony Project in Git.

Checking out a versioned Symfony Application

When using Composerto manageapplication's dependencies,it's recommendedto ignore the entire
vendor/ directory beforecommitting its codeto the repository.This meansthat when checkingout a
Symfonyapplicationfrom aGit repository,therewill beno vendor/ directoryandthe applicationwon't
work out-of-the-box.

In order to makeit work, checkout the Symfonyapplication and then executethe install Composer
command to download and install all the dependencies required by the application:

1
2

$ cd my_project_name/
$ composer install

How doesComposerknow which specificdependenciesto install?Becausewhena Symfonyapplication
is committed to a repository, the composer.json and composer.lock files are also committed.
Thesefiles tell Composerwhich dependencies(andwhich specificversions)to install for the application.

Beginning Development
Now that you haveafully-functional Symfonyapplication,you canbegindevelopment!Your distribution
may contain somesamplecode- checkthe README.mdfile included with the distribution (open it asa
text file) to learn about what sample code was included with your distribution.

If you'renewto Symfony,checkout "Createyour FirstPagein Symfony", whereyou'll learnhow to create
pages, change configuration, and do everything else you'll need in your new application.

Besureto alsocheckout the Cookbook, which containsa wide varietyof articlesabout solvingspecific
problems with Symfony.

6. https://github.com/symfony/symfony-standard

7. https://github.com/symfony-cmf/symfony-cmf-standard

8. http://cmf.symfony.com/

9. https://github.com/gimler/symfony-rest-edition

10. https://github.com/FriendsOfSymfony/FOSRestBundle

11. http://git-scm.com/

PDF brought to you by

generated on July 28, 2016

Chapter 3: Installing and Configuring Symfony | 32

http://sensiolabs.com

Listing 4-1

Chapter 4

Create your First Page in Symfony

Creating a new page - whether it's an HTML page or a JSON endpoint - is a simple two-step process:
1. Create a route: A route is the URL (e.g./about) to your page and points to a controller;
2. Createa controller: A controller is the PHPfunction you write that builds the page.You take

the incoming requestinformation anduseit to createa SymfonyResponseobject,which canhold
HTML content, a JSONstring or evena binary file like an imageor PDF.The only rule is that
a controller must return a SymfonyResponseobject (and you'll evenlearn to bend this rule
eventually).

Just like on the web, everyinteraction is initiated by an HTTP request.Your job is pure and simple:
understand that request and return a response.

Do you prefer video tutorials? Checkout the Joyful Developmentwith Symfony1 screencastseriesfrom
KnpUniversity.

Creating a Page: Route and Controller

Beforecontinuing, makesureyou'vereadthe Installationchapterand canaccessyour new Symfony
app in the browser.

Supposeyou want to createa page- /lucky/ number- that generatesa lucky (well, random) number
and prints it. To do that, createa "Controller class"and a "controller" method inside of it that will be
executed when someone goes to/lucky/number :

1
2
3
4
5
6
7
8

// src/AppBundle/Controller/LuckyController.php
namespaceAppBundle\Controller ;

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route ;
use Symfony\Component\HttpFoundation\Response;

class LuckyController
{

1. http://knpuniversity.com/screencast/symfony/first-page

PDF brought to you by

generated on July 28, 2016

Chapter 4: Create your First Page in Symfony | 33

http://sensiolabs.com

Listing 4-2

9
10
11
12
13
14
15
16
17
18
19
20

/**
* @Route("/lucky/number")
*/

public function numberAction()
{

$number= rand(0, 100);

return new Response(
'<html><body>Lucky number: ' . $number. '</body></html>'

);
}

}

Before diving into this, test it out! If you are using PHP's internal web server go to:

http://localhost:8000/lucky/number

If you setup avirtual host in Apacheor Nginx replacehttp://localhost:8000 with your hostname
and addapp_dev.phpto make sure Symfony loads in the "dev" environment:

http://symfony.dev/app_dev.php/lucky/number

If you seea lucky numberbeingprinted back to you, congratulations!But beforeyou run off to play the
lottery, check out how this works.

The @RouteabovenumberAction() is calledan annotationand it definesthe URL pattern. You can
also write routes in YAML (or other formats): read about this in the routing chapter. Actually, most
routing examples in the docs have tabs that show you how each format looks.

The methodbelow the annotation - numberAction- is calledthe controllerand is whereyou build the
page.The only rule is that a controller mustreturn a SymfonyResponseobject (and you'll evenlearn to
bend this rule eventually).

Creating a JSON Response

The Responseobject you return in your controller cancontain HTML, JSONor evena binary file like
an image or PDF. You can easily set HTTP headers or the status code.

Supposeyou want to createa JSONendpoint that returns the lucky number. Justadd a secondmethod
to LuckyController :

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

// src/AppBundle/Controller/LuckyController.php

// ...
class LuckyController
{

// ...

/**
* @Route("/api/lucky/number")
*/

public function apiNumberAction()
{

$data = array (
'lucky_number' => rand(0, 100),

);

return new Response(
json_encode($data),

PDF brought to you by

generated on July 28, 2016

Chapter 4: Create your First Page in Symfony | 34

http://localhost:8000/lucky/number
http://symfony.dev/app_dev.php/lucky/number
http://sensiolabs.com

Listing 4-3

Listing 4-4

19
20
21
22
23

200,
array ('Content-Type' => 'application/json')

);
}

}

Try this out in your browser:

http://localhost:8000/api/lucky/number

You can even shorten this with the handyJsonResponse2:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// src/AppBundle/Controller/LuckyController.php

// ...
// --> don't forget this new use statement
use Symfony\Component\HttpFoundation\JsonResponse;

class LuckyController
{

// ...

/**
* @Route("/api/lucky/number")
*/

public function apiNumberAction()
{

$data = array (
'lucky_number' => rand(0, 100),

);

// calls json_encode() and sets the Content-Type header
return new JsonResponse($data);

}
}

Dynamic URL Patterns: /lucky/number/{count}
Woh, you're doing great!But Symfony'srouting can do a lot more. Supposenow that you want a user
to beableto go to /lucky/ number/5to generate5 lucky numbersat once.Updatethe route to havea
{wildcard} part at the end:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// src/AppBundle/Controller/LuckyController.php

// ...
class LuckyController
{

/**
* @Route("/lucky/number/{count}")
*/

public function numberAction()
{

// ...
}

// ...
}

2. http://api.symfony.com/master/Symfony/Component/HttpFoundation/JsonResponse.html

PDF brought to you by

generated on July 28, 2016

Chapter 4: Create your First Page in Symfony | 35

http://localhost:8000/api/lucky/number
http://sensiolabs.com

Listing 4-5

Listing 4-6

Becauseof the {count} "wildcard" placeholder,the URL to the pageis different: it now works for URLs
matching /lucky/ number/* - for example/lucky/ number/5. The bestpart is that you can access
this value and use it in your controller:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

// src/AppBundle/Controller/LuckyController.php
// ...

class LuckyController
{

/**
* @Route("/lucky/number/{count}")
*/

public function numberAction($count)
{

$numbers= array ();
for ($i = 0; $i < $count; $i ++) {

$numbers[] = rand(0, 100);
}
$numbersList = implode(', ' , $numbers);

return new Response(
'<html><body>Lucky numbers: ' . $numbersList. '</body></html>'

);
}

// ...
}

Try it by printing 7 lucky numbers:

http://localhost:8000/lucky/number/7

You can get the value of any ``{placeholder}`` in your route by adding a ``$placeholder`` argument
to your controller. Just make sure that the placeholder (e.g. ``{id}``) matches the argument name
(e.g. ``$id``).

The routing systemcando a lot more,like supportingmultiple placeholders(e.g./blog/ {category}/
{page})), making placeholdersoptional and forcing placeholderto match a regularexpression(e.g.so
that {count} mustbea number).Find out about all of this and becomea routing expert in the Routing
chapter.

Rendering a Template (with the Service Container)
If you're returning HTML from your controller, you'll probably want to rendera template.Fortunately,
Symfony comes withTwig3: a templating language that's easy, powerful and actually quite fun.

Sofar, LuckyController doesn'textendany baseclass.The easiestway to useTwig - or many other
tools in Symfony - is to extend Symfony's baseController 4 class:

1
2
3
4
5
6
7

// src/AppBundle/Controller/LuckyController.php

// ...
// --> add this new use statement
use Symfony\Bundle\FrameworkBundle\Controller\Controller ;

class LuckyController extends Controller

3. http://twig.sensiolabs.org

4. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/Controller.html

PDF brought to you by

generated on July 28, 2016

Chapter 4: Create your First Page in Symfony | 36

http://localhost:8000/lucky/number/7
http://sensiolabs.com

Listing 4-7

Listing 4-8

8
9

10

{
// ...

}

Using thetemplating Service

This doesn'tchangeanything, but it doesgive you accessto Symfony'sservicecontainer: an array-like
object that givesyou accessto everyusefulobject in the system.Theseusefulobjectsarecalledservices,
and Symfonyshipswith a serviceobject that canrenderTwig templates,another that can log messages
and many more.

To render a Twig template, use a service calledtemplating :

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// src/AppBundle/Controller/LuckyController.php

// ...
class LuckyController extends Controller
{

/**
* @Route("/lucky/number/{count}")
*/

public function numberAction($count)
{

// ...
$numbersList = implode(', ' , $numbers);

$html = $this ->container ->get('templating') ->render(
'lucky/number.html.twig' ,
array ('luckyNumberList' => $numbersList)

);

return new Response($html);
}

// ...
}

You'll learn a lot more about the important "servicecontainer" asyou keepreading.For now, you just
need to know that it holds a lot of objects, and you can get() 5 any object by using its nickname,
like templating or logger . The templating serviceis an instanceof TwigEngine6 and this hasa
render() 7 method.

But this cangeteveneasier!Byextendingthe Controller class,you alsogeta lot of shortcut methods,
like render() 8:

1
2
3
4
5
6
7
8
9

10
11
12
13

// src/AppBundle/Controller/LuckyController.php

// ...
/**
* @Route("/lucky/number/{count}")
*/

public function numberAction($count)
{

// ...

/*
$html = $this->container->get('templating')->render(

'lucky/number.html.twig',

5. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#method_get

6. http://api.symfony.com/master/Symfony/Bundle/TwigBundle/TwigEngine.html

7. http://api.symfony.com/master/Symfony/Bundle/TwigBundle/TwigEngine.html#method_render

8. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#method_render

PDF brought to you by

generated on July 28, 2016

Chapter 4: Create your First Page in Symfony | 37

http://sensiolabs.com

Listing 4-9

14
15
16
17
18
19
20
21
22
23
24
25

array('luckyNumberList' => $numbersList)
);

return new Response($html);
*/

// render(): a shortcut that does the same as above
return $this ->render(

'lucky/number.html.twig' ,
array ('luckyNumberList' => $numbersList)

);
}

You will learn more about these shortcut methods and how they work in theControllerchapter.

Create the Template

If you refresh your browser now, you'll get an error:

Unable to find template "lucky/number.html.twig"

Fix that by creating a new app/Resources/views/ lucky directory and putting a
number.html.twig file inside of it:

1
2
3
4
5
6

{# app/Resources/views/lucky/number.html.twig #}
{% extends 'base.html.twig' %}

{% block body %}
<h1>Lucky Numbers:{{ luckyNumberList }} </h1>

{% endblock %}

Welcome to Twig! This simple file already shows off the basics:

¥ The {{ variableName }} syntaxis usedto print something.In this template,luckyNumberList is a variable
that you're passing into the template from therender call in the controller.

¥ The {% extends 'base.html.twig' %} points to a layout file that lives at app/Resources/views/
base.html.twig9 andcamewith your newproject. It's really basic(an unstyledHTML structure)and
it's yours to customize.

¥ The {% block body %} part usesTwig's inheritancesystemto put the content into the middle of the
base.html.twig layout.

Refresh to see your template in action!

http://localhost:8000/lucky/number/7

If you view the sourcecode of the displayedpage,you now havea basicHTML structure thanks to
base.html.twig .

This is just the surfaceof Twig'spower.When you'rereadyto masterits syntax,loop overarrays,render
other templates and other cool things, read theTemplatingchapter.

9. https://github.com/symfony/symfony-standard/blob/2.7/app/Resources/views/base.html.twig

PDF brought to you by

generated on July 28, 2016

Chapter 4: Create your First Page in Symfony | 38

http://localhost:8000/lucky/number/7
http://sensiolabs.com

Exploring the Project
You'vealreadycreateda flexible URL, rendereda template that usesinheritanceand createda JSON
endpoint. Nice!

It's time to exploreand demystify the files in your project. You'vealreadyworked inside the two most
important directories:
app/app/

Containsthingslike configurationandtemplates.Basically,anythingthat isnot PHPcodegoeshere.

src/src/

Your PHP code lives here.

99% of the time, you'll be working in src/ (PHP files) or app/ (everythingelse).As you get more
advanced, you'll learn what can be done inside each of these.

Theapp/ directoryalsoholdssomeother things, like app/AppKernel.php, which you'll useto enable
new bundles (this is one of averyshort list of PHP files inapp/).

Thesrc/ directoryhasjust onedirectory - src/ AppBundle- andeverythinglivesinsideof it. A bundle
is like a "plugin" and you can find opensourcebundles10 and install them into your project. But even
your codelivesin a bundle - typically AppBundle(though there'snothing specialabout AppBundle).To
find out more about bundlesand why you might createmultiple bundles(hint: sharingcodebetween
projects), see theBundleschapter.

So what about the other directories in the project?
web/web/

This is the documentroot for the projectandcontainsanypublicly accessiblefiles, like CSS,images
andtheSymfonydevelopmentandproduction front controllersthat executetheapp(app_dev.phpand
app.php).

tests/tests/

The automatic tests (e.g. Unit tests) of your application live here.

bin/bin/

The "binary" files live here. The most important one is the console file which is used to execute
Symfony commands via the console.

var/var/

This is where automatically created files are stored, like cache files (var/cache/) and logs (var/logs/).

vendor/vendor/

Third-party (i.e. "vendor") libraries live here!Theseare typically downloadedvia the Composer11

package manager.

Symfonyis flexible.If youneedto, youcaneasilyoverridethedefaultdirectorystructure.SeeHow to Override
Symfony's default Directory Structure.

Application Configuration
Symfonycomeswith severalbuilt-in bundles(openyour app/AppKernel.php file) andyou'll probably
install more. The main configuration file for bundles isapp/config/config.yml :

10. http://knpbundles.com

11. https://getcomposer.org

PDF brought to you by

generated on July 28, 2016

Chapter 4: Create your First Page in Symfony | 39

http://sensiolabs.com

Listing 4-10

Listing 4-11

1
2
3
4
5
6
7
8
9

10
11
12
13
14

app/config/config.yml

...
framework:

secret : '%secret%'
router :

resource: '%kernel.root_dir%/config/routing.yml'
...

twig :
debug: '%kernel.debug%'
strict_variables : '%kernel.debug%'

...

The frameworkkey configuresFrameworkBundle,the twig key configuresTwigBundleand so on. A
lot of behaviorin Symfonycan be controlled just by changingone option in this configuration file. To
find out how, see theConfiguration Referencesection.

Or, to getabig exampledump of all of the valid configurationunderakey,usethe handybin/ console
command:

1 $ php bin/console config:dump-reference framework

There'sa lot more power behind Symfony'sconfiguration system,including environments,imports and
parameters. To learn all of it, see theConfiguring Symfony (and Environments)chapter.

What's Next?
Congrats!You're alreadystarting to masterSymfonyand learn a whole new way of building beautiful,
functional, fast and maintainable apps.

Ok, time to finish mastering the fundamentals by reading these chapters:

¥ Controller
¥ Routing
¥ Creating and Using Templates

Then, in the SymfonyBook, learnabout the servicecontainer, the form system, usingDoctrine(if you need
to query a database) and more!

There's also aCookbookpackedwith more advanced "how to" articles to solvea lot of problems.

Have fun!

PDF brought to you by

generated on July 28, 2016

Chapter 4: Create your First Page in Symfony | 40

http://sensiolabs.com

Listing 5-1

Chapter 5

Controller

A controller is a PHPcallableyou createthat takesinformation from the HTTP requestand createsand
returnsan HTTP response(asa SymfonyResponseobject).The responsecould bean HTML page,an
XML document,aserializedJSONarray,an image,a redirect,a404error or anythingelseyou candream
up. The controller containswhateverarbitrary logic your applicationneedsto render the content of a
page.

Seehow simple this is by looking at a Symfonycontroller in action. This rendersa pagethat prints the
famousHello world! :

1
2
3
4
5
6

use Symfony\Component\HttpFoundation\Response;

public function helloAction ()
{

return new Response('Hello world!');
}

The goal of a controller is alwaysthe same:createand return a Responseobject. Along the way, it
might readinformation from the request,load a databaseresource,sendan email,or setinformation on
the user'ssession.But in all cases,the controller will eventuallyreturn the Responseobject that will be
delivered back to the client.

There's no magic and no other requirements to worry about! Here are a few common examples:

¥ Controller Aprepares aResponseobject representing the content for the homepage of the site.
¥ ControllerB readsthe {slug} placeholderfrom the requestto loadablog entry from the databaseand

createsa Responseobject displayingthat blog. If the {slug} can't be found in the database,it creates
and returns aResponseobject with a 404 status code.

¥ ControllerC handlesthe form submissionof a contactform. It readsthe form information from the
request,savesthe contact information to the databaseand emailsthe contact information to you.
Finally, it createsa Responseobject that redirectsthe client'sbrowserto the contactform "thank you"
page.

PDF brought to you by

generated on July 28, 2016

Chapter 5: Controller | 41

http://sensiolabs.com

Listing 5-2

Requests, Controller, Response Lifecycle
Everyrequesthandledby aSymfonyprojectgoesthrough thesamesimplelifecycle.The frameworktakes
care of all the repetitive stuff: you just need to write your custom code in the controller function:

1. Eachrequestexecutesa singlefront controller file (e.g.app.php on production or app_dev.phpon
development) that bootstraps the application;

2. The front controller'sonly job is to initialize Symfony'sengine(called the Kernel) and passit a
Requestobject to handle;

3. The Symfony core asks the router to inspect the request;
4. The router matchesthe incoming URL to a specificroute and returns information about the

route, including the controller that should be executed;
5. The correct controller from the matchedroute is executedand the code inside the controller

creates and returns the appropriateResponseobject;
6. The HTTP headers and content of theResponseobject are sent back to the client.

Creating a pageis as easyas creatinga controller (#5) and making a route that mapsa URL to that
controller (#4).

Though similarly named,a "front controller" is different from the PHPfunctionscalled"controllers"
talked about in this chapter.A front controller is a short PHPfile that lives in your web/ directory
through which all requestsaredirected.A typical applicationwill havea production front controller
(e.g.app.php) and a developmentfront controller (e.g.app_dev.php). You'll likely neverneed
to edit, view or worry about the front controllers in your application. The "controller class" is
a convenient way to group several"controllers", also called actions, together in one class(e.g.
updateAction() , deleteAction() , etc). So,a controller is a method insidea controller class.
They hold your code which creates and returns the appropriateResponseobject.

A Simple Controller
While acontroller canbeanyPHPcallable(a function, methodon anobject,or aClosure), acontroller
is usually a method inside a controller class:

1
2
3
4
5
6

// src/AppBundle/Controller/HelloController.php
namespaceAppBundle\Controller ;

use Symfony\Component\HttpFoundation\Response;

class HelloController

PDF brought to you by

generated on July 28, 2016

Chapter 5: Controller | 42

http://sensiolabs.com

Listing 5-3

7
8
9

10
11
12

{
public function indexAction ($name)
{

return new Response('<html><body>Hello ' . $name. '!</body></html>');
}

}

The controller is the indexAction() method, which lives inside a controller class
HelloController .

This controller is pretty straightforward:

¥ line 2: Symfony takes advantageof PHP's namespacefunctionality to namespacethe entire
controller class.

¥ line 4: Symfonyagaintakesadvantageof PHP'snamespacefunctionality: the use keyword imports
the Responseclass, which the controller must return.

¥ line 6: The classnameis the concatenationof a namefor the controller class(i.e. Hello) and the
word Controller . This is a conventionthat providesconsistencyto controllersand allowsthem to be
referenced only by the first part of the name (i.e.Hello) in the routing configuration.

¥ line 8: Each action in a controller classis suffixed with Action and is referencedin the routing
configuration by the action'sname(e.g. index). In the next section,you'll createa route that maps
a URI to this action. You'll learn how the route's placeholders({name}) becomeargumentsto the
controller method ($name).

¥ line 10: The controller creates and returns aResponseobject.

Mapping a URL to a Controller
The new controller returnsa simpleHTML page.To actuallyview this pagein your browser,you need
to create a route, which maps a specific URL path to the controller:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// src/AppBundle/Controller/HelloController.php
namespaceAppBundle\Controller ;

use Symfony\Component\HttpFoundation\Response;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route ;

class HelloController
{

/**
* @Route("/hello/{name}", name="hello")
*/

public function indexAction ($name)
{

return new Response('<html><body>Hello ' . $name. '!</body></html>');
}

}

Now, you cango to /hello/ ryan (e.g.http://localhost:8000/ hello/ ryan if you'reusingthe
built-in web server) and Symfonywill executethe HelloController::indexAction() controller
and passin ryan for the $namevariable.Creatinga "page"meanssimply creatinga controller method
and an associated route.

Simple, right?

PDF brought to you by

generated on July 28, 2016

Chapter 5: Controller | 43

http://sensiolabs.com

Listing 5-4

Listing 5-5

Listing 5-6

The AppBundle:Hello:index controller syntax

If you usethe YAML or XML formats, you'll refer to the controller using a specialshortcut syntax
called the logicalcontrollernamewhich, for example,looks like AppBundle:Hello:index . For
more details on the controller format, read Controller Naming Pattern subtitle of the Routing
chapter.

Route Parameters as Controller Arguments

You already know that the route points to the HelloController::indexAction() controller
method that lives inside AppBundle. What's more interesting is the argument that is passedto that
controller method:

1
2
3
4
5
6
7
8
9

10
11

// src/AppBundle/Controller/HelloController.php
// ...
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route ;

/**
* @Route("/hello/{name}", name="hello")
*/

public function indexAction ($name)
{

// ...
}

The controller hasa singleargument,$name, which correspondsto the {name}placeholderfrom the
matchedroute (e.g.ryan if you goto /hello/ ryan). When executingthe controller, Symfonymatches
eachargumentwith aplaceholderfrom the route.Sothevaluefor {name}is passedto $name. Justmake
sure that the name of the placeholder is the same as the name of the argument variable.

Take the following more-interesting example, where the controller has two arguments:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// src/AppBundle/Controller/HelloController.php
// ...

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route ;

class HelloController
{

/**
* @Route("/hello/{firstName}/{lastName}", name="hello")
*/

public function indexAction ($firstName , $lastName)
{

// ...
}

}

Mapping route parametersto controller argumentsis easyand flexible. Keepthe following guidelinesin
mind while you develop.

1. The order of the controller arguments does not matter

Symfonymatchesthe parameternames from the route to the variablenamesof the controller.
The arguments of the controller could be totally reordered and still work perfectly:

public function indexAction ($lastName, $firstName)
{

// ...
}

2. Each required controller argument must match up with a routing parameter

PDF brought to you by

generated on July 28, 2016

Chapter 5: Controller | 44

http://sensiolabs.com

Listing 5-7

Listing 5-8

Listing 5-9

Listing 5-10

The following would throw a RuntimeExceptionbecausethereis no foo parameterdefined
in the route:

public function indexAction ($firstName , $lastName, $foo)
{

// ...
}

Making the argument optional, however, is perfectly ok. The following examplewould not
throw an exception:

public function indexAction ($firstName , $lastName, $foo = 'bar')
{

// ...
}

3. Not all routing parameters need to be arguments on your controller

If, for example,the lastNameweren'timportant for your controller, you could omit it entirely:

public function indexAction ($firstName)
{

// ...
}

You can also passother variablesfrom your route to your controller arguments.SeeHow to Pass
Extra Information from a Route to a Controller.

The Base Controller Class
For convenience,Symfonycomeswith an optional baseController 1 class.If you extendit, this won't
changeanythingabout how your controller works, but you'll getaccessto a numberof helper methods
and the service container (seeAccessingother Services): an array-like object that givesyou accessto
everyuseful object in the system.Theseuseful objectsare called services, and Symfonyships with a
service object that can render Twig templates, another that can log messages and many more.

Add theusestatement atop theController class and then modifyHelloController to extend it:

1
2
3
4
5
6
7
8
9

// src/AppBundle/Controller/HelloController.php
namespaceAppBundle\Controller ;

use Symfony\Bundle\FrameworkBundle\Controller\Controller ;

class HelloController extends Controller
{

// ...
}

Helper methodsare just shortcuts to using core Symfonyfunctionality that's availableto you with or
without the useof the baseController class.A greatway to seethe corefunctionality in action is to
look in theController 2 class.

Generating URLs

The generateUrl() 3 method is just a helper method that generates the URL for a given route.

1. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/Controller.html

2. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/Controller.html

3. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#method_generateUrl

PDF brought to you by

generated on July 28, 2016

Chapter 5: Controller | 45

http://sensiolabs.com

Listing 5-11

Listing 5-12

Listing 5-13

Listing 5-14

Listing 5-15

Listing 5-16

Redirecting

If you want to redirect the user to another page, use theredirectToRoute() method:

1
2
3
4
5
6
7

public function indexAction ()
{

return $this ->redirectToRoute ('homepage');

// redirectToRoute is equivalent to using redirect() and generateUrl() together:
// return $this->redirect($this->generateUrl('homepage'));

}

By default, the redirectToRoute() method performsa 302 (temporary) redirect. To perform a 301
(permanent) redirect, modify the third argument:

public function indexAction ()
{

return $this ->redirectToRoute ('homepage', array (), 301);
}

To redirect to anexternalsite, useredirect() and pass it the external URL:

public function indexAction ()
{

return $this ->redirect ('http://symfony.com/doc');
}

For more information, see theRouting chapter.

The redirectToRoute() method is simply a shortcut that createsa Responseobject that
specializes in redirecting the user. It's equivalent to:

1
2
3
4
5
6

use Symfony\Component\HttpFoundation\RedirectResponse;

public function indexAction ()
{

return new RedirectResponse($this ->generateUrl ('homepage'));
}

Rendering Templates

If you're servingHTML, you'll want to render a template.The render() method rendersa template
and puts that content into aResponseobject for you:

// renders app/Resources/views/hello/index.html.twig
return $this ->render('hello/index.html.twig' , array ('name' => $name));

Templatescanalsolive in deepersub-directories.Justtry to avoidcreatingunnecessarilydeepstructures:

// renders app/Resources/views/hello/greetings/index.html.twig
return $this ->render('hello/greetings/index.html.twig' , array (

'name' => $name
));

Templatesareagenericwayto rendercontentin anyformat. And while in mostcasesyou'll usetemplates
to render HTML content, a template can just as easily generateJavaScript,CSS,XML or any other
format you candreamof. To learnhow to renderdifferent templatingformatsreadtheTemplateFormats
section of the Creating and Using Templates chapter.

The Symfony templating engine is explained in great detail in theCreating and Using Templates chapter.

PDF brought to you by

generated on July 28, 2016

Chapter 5: Controller | 46

http://sensiolabs.com

Listing 5-17

Listing 5-18

Listing 5-19

Listing 5-20

Templating Naming Pattern

Youcanalsoput templatesin theResources/views directoryof abundleandreferencethemwith
a specialshortcut syntax like @App/Hello/ index.html.twig or @App/layout.html.twig .
These would live in at Resources/views/ Hello/ index.html.twig and Resources/
views/layout.html.twig inside the bundle respectively.

Accessing other Services

Symfony comes packed with a lot of useful objects, called services.These are used for rendering
templates,sendingemails,querying the databaseand any other "work" you can think of. When you
install a new bundle, it probably brings in evenmoreservices.

When extendingthe basecontroller class,you canaccessanySymfonyservicevia the get() 4 methodof
the Controller class. Here are several common services you might need:

1
2
3
4
5

$templating = $this ->get('templating');

$router = $this ->get('router');

$mailer = $this ->get('mailer');

What other services exist? To list all services, use thedebug:container console command:

1 $ php bin/console debug:container

For more information, see theService Containerchapter.

To get a container configuration parameter in controller you can use the getParameter() 5

method:

$from = $this ->getParameter('app.mailer.from');

Managing Errors and 404 Pages
When thingsarenot found, you shouldplay well with the HTTP protocol and return a 404response.To
do this, you'll throw a specialtype of exception.If you'reextendingthe baseController class,do the
following:

1
2
3
4
5
6
7
8
9

10

public function indexAction ()
{

// retrieve the object from database
$product = ... ;
if (! $product) {

throw $this ->createNotFoundException('The product does not exist');
}

return $this ->render(...);
}

4. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#method_get

5. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#method_getParameter

PDF brought to you by

generated on July 28, 2016

Chapter 5: Controller | 47

http://sensiolabs.com

Listing 5-21

Listing 5-22

Listing 5-23

The createNotFoundException() 6 method is just a shortcut to create a special
NotFoundHttpException7 object, which ultimately triggers a 404 HTTP response inside Symfony.

Of course,you're free to throw any Exception classin your controller - Symfonywill automatically
return a 500 HTTP response code.

1 throw new \Exception ('Something went wrong!');

In everycase,anerror pageis shownto the enduseranda full debugerror pageis shownto the developer
(i.e. when you're using theapp_dev.phpfront controller - seeEnvironments).

You'll want to customizethe error pageyour user sees.To do that, seethe "How to CustomizeError
Pages" cookbook recipe.

The Request object as a Controller Argument
What if you needto readquery parameters,graba requestheaderor getaccessto an uploadedfile?All
of that information is storedin Symfony'sRequestobject.To get it in your controller, just add it asan
argument andtype-hint it with the ``Request`` class :

1
2
3
4
5
6
7
8

use Symfony\Component\HttpFoundation\Request;

public function indexAction ($firstName , $lastName, Request $request)
{

$page = $request->query->get('page' , 1);

// ...
}

Managing the Session
Symfonyprovidesa nice sessionobject that you can use to store information about the user (be it a
real personusing a browser,a bot, or a web service)betweenrequests.By default, Symfonystoresthe
attributes in a cookie by using the native PHP sessions.

To retrievethe session,call getSession() 8 method on the Requestobject. This method returns a
SessionInterface 9 with easy methods for storing and fetching things from the session:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

use Symfony\Component\HttpFoundation\Request;

public function indexAction (Request $request)
{

$session = $request->getSession();

// store an attribute for reuse during a later user request
$session->set ('foo' , 'bar');

// get the attribute set by another controller in another request
$foobar = $session->get('foobar');

// use a default value if the attribute doesn't exist
$filters = $session->get('filters' , array ());

}

6. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#method_createNotFoundException

7. http://api.symfony.com/master/Symfony/Component/HttpKernel/Exception/NotFoundHttpException.html

8. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#method_getSession

9. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/SessionInterface.html

PDF brought to you by

generated on July 28, 2016

Chapter 5: Controller | 48

http://sensiolabs.com

Listing 5-24

Listing 5-25

Stored attributes remain in the session for the remainder of that user's session.

Flash Messages

You can also store specialmessages,called "flash" messages,on the user'ssession.By design, flash
messagesaremeant to be usedexactlyonce:they vanishfrom the sessionautomaticallyassoonasyou
retrieve them. This feature makes "flash" messages particularly great for storing user notifications.

For example, imagine you're processing a form submission:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

use Symfony\Component\HttpFoundation\Request;

public function updateAction (Request $request)
{

$form = $this ->createForm(...);

$form->handleRequest($request);

if ($form->isValid ()) {
// do some sort of processing

$this ->addFlash(
'notice' ,
'Your changes were saved!'

);

// $this->addFlash is equivalent to $this->get('session')->getFlashBag()->add

return $this ->redirectToRoute (...);
}

return $this ->render(...);
}

After processingthe request,the controller setsa flash messagein the sessionand then redirects.The
message key (notice in this example) can be anything: you'll use this key to retrieve the message.

In the templateof the next page(or evenbetter, in your baselayout template),readany flash messages
from the session:

1
2
3
4
5

{% for flash_message in app.session.flashBag.get ('notice') %}
<div class= "flash-notice" >

{{ flash_message }}
</div>

{% endfor %}

It's common to use notice , warning and error as the keys of the different types of flash
messages, but you can use any key that fits your needs.

You can use thepeek() 10 method instead to retrieve the message while keeping it in the bag.

The Request and Response Object
As mentionedearlier, the framework will passthe Requestobject to any controller argumentthat is
type-hinted with theRequestclass:

10. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Flash/FlashBagInterface.html#method_peek

PDF brought to you by

generated on July 28, 2016

Chapter 5: Controller | 49

http://sensiolabs.com

Listing 5-26

Listing 5-27

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

use Symfony\Component\HttpFoundation\Request;

public function indexAction (Request $request)
{

$request->isXmlHttpRequest(); // is it an Ajax request?

$request->getPreferredLanguage(array ('en' , 'fr'));

// retrieve GET and POST variables respectively
$request->query->get('page');
$request->request ->get('page');

// retrieve SERVER variables
$request->server ->get('HTTP_HOST');

// retrieves an instance of UploadedFile identified by foo
$request->files ->get('foo');

// retrieve a COOKIE value
$request->cookies->get('PHPSESSID');

// retrieve an HTTP request header, with normalized, lowercase keys
$request->headers->get('host');
$request->headers->get('content_type');

}

The Requestclasshas severalpublic propertiesand methods that return any information you need
about the request.

Like the Request, the Response object has also a public headers property. This is a
ResponseHeaderBag11 that has some nice methods for getting and setting responseheaders.The
headernamesare normalizedso that using Content-Type is equivalentto content-type or even
content_type .

The only requirement for a controller is to return a Responseobject. The Response12 classis an
abstractionaround the HTTP response- the text-basedmessagefilled with headersand content that's
sent back to the client:

1
2
3
4
5
6
7
8

use Symfony\Component\HttpFoundation\Response;

// create a simple Response with a 200 status code (the default)
$response = new Response('Hello ' . $name, Response:: HTTP_OK);

// create a CSS-response with a 200 status code
$response = new Response('<style> ... </style>');
$response->headers->set ('Content-Type' , 'text/css');

There are also special classes to make certain kinds of responses easier:

¥ For JSON, there isJsonResponse13. SeeCreating a JSON Response.
¥ For files, there isBinaryFileResponse14. SeeServing Files.
¥ For streamed responses, there isStreamedResponse15. SeeStreaming a Response.

Now that you know the basicsyou cancontinueyour researchon SymfonyRequest and Responseobjectin the
HttpFoundation component documentation.

11. http://api.symfony.com/master/Symfony/Component/HttpFoundation/ResponseHeaderBag.html

12. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html
13. http://api.symfony.com/master/Symfony/Component/HttpFoundation/JsonResponse.html
14. http://api.symfony.com/master/Symfony/Component/HttpFoundation/BinaryFileResponse.html
15. http://api.symfony.com/master/Symfony/Component/HttpFoundation/StreamedResponse.html

PDF brought to you by

generated on July 28, 2016

Chapter 5: Controller | 50

http://sensiolabs.com

Listing 5-28

Listing 5-29

Listing 5-30

JSON Helper

New in version 3.1:The json() helper was introduced in Symfony 3.1.

Returning JSONcontentsis increasinglypopular for API-basedapplications.For that reason,the base
controller classdefines a json() method which createsa JsonResponseand encodesthe given
contents automatically:

1
2
3
4
5
6
7
8
9

// ...
public function indexAction ()
{

// returns '{"username":"jane.doe"}' and sets the proper Content-Type header
return $this ->json (array ('username' => 'jane.doe'));

// the shortcut defines three optional arguments
// return $this->json($data, $status = 200, $headers = array(), $context = array());

}

If the serializerserviceis enabledin your application, contentspassedto json() are encodedwith it.
Otherwise, thejson_encode16 function is used.

File helper

New in version 3.2:The file() helper was introduced in Symfony 3.2.

You can use thefile() 17 helper to serve a file from inside a controller:

1
2
3
4
5

public function fileAction ()
{

// send the file contents and force the browser to download it
return $this ->file ('/path/to/some_file.pdf');

}

The file() helper provides some arguments to configure its behavior:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

use Symfony\Component\HttpFoundation\File\File ;
use Symfony\Component\HttpFoundation\ResponseHeaderBag;

public function fileAction ()
{

// load the file from the filesystem
$file = new File ('/path/to/some_file.pdf');

return $this ->file ($file);

// rename the downloaded file
return $this ->file ($file , 'custom_name.pdf');

// display the file contents in the browser instead of downloading it
return $this ->file ('invoice_3241.pdf' , 'my_invoice.pdf' , ResponseHeaderBag:: DISPOSITION_INLINE);

}

Creating Static Pages
You can createa static pagewithout evencreatinga controller (only a route and templateareneeded).
See cookbook articleHow to Render a Template without a custom Controller.

16. http://php.net/manual/en/function.json-encode.php

17. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#method_file

PDF brought to you by

generated on July 28, 2016

Chapter 5: Controller | 51

http://sensiolabs.com

Listing 5-31

Listing 5-32

Listing 5-33

Forwarding to Another Controller
Though not verycommon,you canalsoforward to anothercontroller internally with the forward() 18

method. Instead of redirecting the user'sbrowser, this makesan "internal" sub-requestand calls the
defined controller. The forward() method returns the Responseobject that's returned from that
controller:

1
2
3
4
5
6
7
8
9

10
11

public function indexAction ($name)
{

$response = $this ->forward ('AppBundle:Something:fancy' , array (
'name' => $name,
'color' => 'green' ,

));

// ... further modify the response or return it directly

return $response;
}

The arraypassedto the methodbecomesthe argumentsfor the resultingcontroller. The targetcontroller
method might look something like this:

public function fancyAction ($name, $color)
{

// ... create and return a Response object
}

Justlike when creatinga controller for a route, the order of the argumentsof fancyAction() doesn't
matter: the matching is done by name.

Validating a CSRF Token
Sometimes,you want to useCSRFprotection in anactionwhereyou don't want to usetheSymfonyForm
component.If, for example,you'redoing a DELETEaction, you canusethe isCsrfTokenValid() 19

method to check the CSRF token:

1
2
3
4
5
6
7
8

if ($this ->isCsrfTokenValid ('token_id' , $submittedToken)) {
// ... do something, like deleting an object

}

// isCsrfTokenValid() is equivalent to:
// $this->get('security.csrf.token_manager')->isTokenValid(
// new \Symfony\Component\Security\Csrf\CsrfToken\CsrfToken('token_id', $token)
//);

Final Thoughts
Wheneveryou createa page,you'll ultimately needto write somecodethat containsthe logic for that
page.In Symfony,this is calleda controller, and it's a PHPfunction whereyou cando anything in order
to return the finalResponseobject that will be returned to the user.

To make life easier,you can chooseto extend a baseController class,which contains shortcut
methodsfor many common controller tasks.For example,sinceyou don't want to put HTML codein
your controller, you can use therender() method to render and return the content from a template.

18. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#method_forward

19. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#method_isCsrfTokenValid

PDF brought to you by

generated on July 28, 2016

Chapter 5: Controller | 52

http://sensiolabs.com

In other chapters,you'll seehow the controller canbeusedto persistand fetch objectsfrom a database,
process form submissions, handle caching and more.

Learn more from the Cookbook
¥ How to Customize Error Pages
¥ How to Define Controllers as Services

PDF brought to you by

generated on July 28, 2016

Chapter 5: Controller | 53

http://sensiolabs.com

Listing 6-1

Chapter 6

Routing

Beautiful URLs are an absolutemust for any seriousweb application. This meansleavingbehind ugly
URLs likeindex.php?article_id=57 in favor of something like/read/intro-to-symfony .

Having flexibility is evenmore important. What if you needto changethe URL of a pagefrom /blog to
/news?How manylinks shouldyou needto hunt down and updateto makethe change?If you'reusing
Symfony's router, the change is simple.

The Symfonyrouter letsyou definecreativeURLsthat you mapto different areasof your application.By
the end of this chapter, you'll be able to:

¥ Create complex routes that map to controllers
¥ Generate URLs inside templates and controllers
¥ Load routing resources from bundles (or anywhere else)
¥ Debug your routes

Routing in Action
A route is a map from a URL path to a controller. For example,supposeyou want to match any URL
like /blog/ my-post or /blog/ all-about-symfony andsendit to acontroller that canlook up and
render that blog entry. The route is simple:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// src/AppBundle/Controller/BlogController.php
namespaceAppBundle\Controller ;

use Symfony\Bundle\FrameworkBundle\Controller\Controller ;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route ;

class BlogController extends Controller
{

/**
* @Route("/blog/{slug}", name="blog_show")
*/

public function showAction($slug)
{

// ...
}

}

PDF brought to you by

generated on July 28, 2016

Chapter 6: Routing | 54

http://sensiolabs.com

Listing 6-2

The path defined by the blog_showroute acts like /blog/* where the wildcard is given the name
slug . For the URL /blog/ my-blog-post , the slug variablegetsa valueof my-blog-post , which
is availablefor you to usein your controller (keepreading).The blog_showis the internal nameof the
route, which doesn'thaveany meaningyet and just needsto be unique. Later, you'll useit to generate
URLs.

If you don't want to use annotations, becauseyou don't like them or becauseyou don't want to
dependon the SensioFrameworkExtraBundle,you can also useYaml, XML or PHP. In theseformats,
the _controller parameteris a specialkey that tells Symfonywhich controller should be executed
when a URL matchesthis route. The _controller string is called the logical name. It follows a
pattern that points to a specific PHP class and method, in this case the
AppBundle\Controller\BlogController::showAction method.

Congratulations!You'vejust createdyour first route and connectedit to a controller. Now, when you
visit /blog/ my-post, the showAction controller will be executedand the $slug variablewill be
equal tomy-post.

This is the goalof the Symfonyrouter: to map the URL of a requestto a controller. Along the way,you'll
learn all sorts of tricks that make mapping even the most complex URLs easy.

Routing: Under the Hood
When a requestis madeto your application, it containsan addressto the exact"resource"that the client
is requesting.This addressis calledthe URL, (or URI), and could be /contact , /blog/ read-me, or
anything else. Take the following HTTP request for example:

1 GET /blog/my-blog-post

The goalof the Symfonyrouting systemis to parsethis URL and determinewhich controller should be
executed. The whole process looks like this:

1. The request is handled by the Symfony front controller (e.g.app.php);
2. The Symfony core (i.e. Kernel) asks the router to inspect the request;
3. The router matchesthe incoming URL to a specificroute and returns information about the

route, including the controller that should be executed;
4. The Symfony Kernel executes the controller, which ultimately returns aResponseobject.

The routing layer is a tool that translates the incoming URL into a specific controller to execute.

PDF brought to you by

generated on July 28, 2016

Chapter 6: Routing | 55

http://sensiolabs.com

Listing 6-3

Listing 6-4

Listing 6-5

Creating Routes
Symfony loads all the routes for your application from a single routing configuration file. The file is
usuallyapp/config/ routing.yml , but canbeconfiguredto beanything(including an XML or PHP
file) via the application configuration file:

1
2
3
4

app/config/config.yml
framework:

...
router : { resource: '%kernel.root_dir%/config/routing.yml' }

Even though all routes are loaded from a single file, it's common practice to include additional
routing resources.To do so, just point out in the main routing configurationfile which externalfiles
should be included. See theIncluding External Routing Resourcessection for more information.

Basic Route Configuration

Defining a route is easy,and a typical application will havelots of routes.A basicroute consistsof just
two parts: thepath to match and adefaults array:

1
2
3
4
5
6
7
8
9

10
11
12
13

// src/AppBundle/Controller/MainController.php

// ...
class MainController extends Controller
{

/**
* @Route("/")
*/

public function homepageAction()
{

// ...
}

}

This route matchesthe homepage(/) andmapsit to the AppBundle:Main:homepagecontroller. The
_controller string is translatedby Symfonyinto an actualPHPfunction and executed.That process
will be explained shortly in theController Naming Patternsection.

Routing with Placeholders

Of coursethe routing systemsupportsmuch more interestingroutes.Many routeswill contain one or
more named "wildcard" placeholders:

1
2
3
4
5
6
7
8
9

10
11
12
13

// src/AppBundle/Controller/BlogController.php

// ...
class BlogController extends Controller
{

/**
* @Route("/blog/{slug}")
*/

public function showAction($slug)
{

// ...
}

}

The path will match anything that looks like /blog/* . Evenbetter, the value matching the {slug}
placeholderwill beavailableinsideyour controller. In other words, if the URL is /blog/ hello-world ,

PDF brought to you by

generated on July 28, 2016

Chapter 6: Routing | 56

http://sensiolabs.com

Listing 6-6

Listing 6-7

Listing 6-8

a$slug variable,with avalueof hello-world , will beavailablein the controller. This canbeused,for
example, to load the blog post matching that string.

The path will not, however, match simply /blog . That's because,by default, all placeholdersare
required. This can be changed by adding a placeholder value to thedefaults array.

Required and Optional Placeholders

To makethings more exciting, add a new route that displaysa list of all the availableblog postsfor this
imaginary blog application:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// src/AppBundle/Controller/BlogController.php

// ...
class BlogController extends Controller
{

// ...

/**
* @Route("/blog")
*/

public function indexAction ()
{

// ...
}

}

Sofar, this route is assimpleaspossible- it containsno placeholdersand will only match the exactURL
/blog . But what if you needthis route to support pagination,where/blog/2 displaysthe secondpage
of blog entries? Update the route to have a new{page} placeholder:

1
2
3
4
5
6
7
8
9

10
11

// src/AppBundle/Controller/BlogController.php

// ...

/**
* @Route("/blog/{page}")
*/

public function indexAction ($page)
{

// ...
}

Like the {slug} placeholderbefore,the valuematching{page} will beavailableinsideyour controller.
Its value can be used to determine which set of blog posts to display for the given page.

But hold on! Sinceplaceholdersarerequiredby default, this routewill no longermatchon simply /blog .
Instead,to seepage1 of the blog, you'd needto usethe URL /blog/1 ! Sincethat'sno wayfor a rich web
app to behave,modify the route to makethe {page} parameteroptional. This is doneby including it in
the defaults collection:

1
2
3
4
5
6
7
8
9

10
11

// src/AppBundle/Controller/BlogController.php

// ...

/**
* @Route("/blog/{page}", defaults={"page" = 1})
*/

public function indexAction ($page)
{

// ...
}

PDF brought to you by

generated on July 28, 2016

Chapter 6: Routing | 57

http://sensiolabs.com

Listing 6-9

By addingpageto the defaults key, the {page} placeholderis no longerrequired.The URL /blog
will match this route and the valueof the pageparameterwill be setto 1. The URL /blog/2 will also
match, giving thepageparameter a value of2. Perfect.

URL Route Parameters

/blog blog {page} = 1

/blog/1 blog {page} = 1

/blog/2 blog {page} = 2

Of course,you can havemore than one optional placeholder(e.g. /blog/ {slug}/ {page}), but
everythingafter an optional placeholdermust be optional. For example,/{page}/ blog is a valid
path, but pagewill always be required (i.e. simply/blog will not match this route).

Routeswith optional parametersat the end will not match on requestswith a trailing slash(i.e.
/blog/ will not match, /blog will match).

Adding Requirements

Take a quick look at the routes that have been created so far:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

// src/AppBundle/Controller/BlogController.php

// ...
class BlogController extends Controller
{

/**
* @Route("/blog/{page}", defaults={"page" = 1})
*/

public function indexAction ($page)
{

// ...
}

/**
* @Route("/blog/{slug}")
*/

public function showAction($slug)
{

// ...
}

}

Can you spot the problem? Notice that both routes have patterns that match URLs that look like
/blog/* . The Symfonyrouter will alwayschoosethe first matchingroute it finds. In other words, the
blog_showroute will neverbe matched.Instead,a URL like /blog/ my-blog-post will match the
first route (blog) and return a nonsense value ofmy-blog-post to the {page} parameter.

URL Route Parameters

/blog/2 blog {page} = 2

/blog/my-blog-post blog {page} = "my-blog-post"

The answerto the problem is to add route requirementsor route conditions(seeCompletelyCustomized
Route Matching with Conditions). The routes in this examplewould work perfectly if the /blog/

PDF brought to you by

generated on July 28, 2016

Chapter 6: Routing | 58

http://sensiolabs.com

Listing 6-10

Listing 6-11

{page} path only matched URLs where the {page} portion is an integer. Fortunately, regular
expression requirements can easily be added for each parameter. For example:

1
2
3
4
5
6
7
8
9

10
11
12
13

// src/AppBundle/Controller/BlogController.php

// ...

/**
* @Route("/blog/{page}", defaults={"page": 1}, requirements={
* "page": "\d+"
* })
*/

public function indexAction ($page)
{

// ...
}

The \d+ requirementis a regularexpressionthat saysthat the valueof the {page} parametermust bea
digit (i.e.anumber).Theblog routewill still matchon aURL like /blog/2 (because2 isanumber),but
it will no longer match a URL like/blog/my-blog-post (becausemy-blog-post is not a number).

As a result, a URL like/blog/my-blog-post will now properly match theblog_showroute.

URL Route Parameters

/blog/2 blog {page} = 2

/blog/my-blog-post blog_show {slug} = my-blog-post

/blog/2-my-blog-post blog_show {slug} = 2-my-blog-post

Earlier Routes always Win

What this all meansis that the order of the routesis very important. If the blog_showroute were
placedabovethe blog route, the URL /blog/2 would match blog_showinsteadof blog since
the {slug} parameterof blog_showhasno requirements.By using proper ordering and clever
requirements, you can accomplish just about anything.

Since the parameter requirements are regular expressions,the complexity and flexibility of each
requirementis entirelyup to you. Supposethe homepageof your application is availablein two different
languages, based on the URL:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

// src/AppBundle/Controller/MainController.php

// ...
class MainController extends Controller
{

/**
* @Route("/{_locale}", defaults={"_locale": "en"}, requirements={
* "_locale": "en|fr"
* })
*/

public function homepageAction($_locale)
{
}

}

For incoming requests,the {_locale} portion of the URL is matchedagainstthe regularexpression
(en|fr) .

PDF brought to you by

generated on July 28, 2016

Chapter 6: Routing | 59

http://sensiolabs.com

Listing 6-12

Path Parameters

/ {_locale} = "en"

/en {_locale} = "en"

/fr {_locale} = "fr"

/es won't match this route

The route requirementscan also include container parameters,as explained in this article. This
comes in handy when the regular expression is very complex and used repeatedly in your
application.

Adding HTTP Method Requirements

In addition to the URL, you can alsomatch on the methodof the incoming request(i.e. GET, HEAD,
POST, PUT, DELETE). Supposeyou createan API for your blog and you have 2 routes: One for
displayinga post (on a GET or HEAD request)andonefor updatinga post (on a PUT request).This can
be accomplished with the following route configuration:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

// src/AppBundle/Controller/MainController.php
namespaceAppBundle\Controller ;

use Sensio\Bundle\FrameworkExtraBundle\Configuration\Method ;
// ...

class BlogApiController extends Controller
{

/**
* @Route("/api/posts/{id}")
* @Method({"GET","HEAD"})
*/

public function showAction($id)
{

// ... return a JSON response with the post
}

/**
* @Route("/api/posts/{id}")
* @Method("PUT")
*/

public function editAction ($id)
{

// ... edit a post
}

}

Despite the fact that thesetwo routes have identical paths (/api/ posts/ {id}), the first route will
matchonly GET or HEAD requestsand the secondroute will matchonly PUT requests.This meansthat
you candisplayandedit the postwith the sameURL, while usingdistinct controllersfor the two actions.

If no methodsare specified, the route will match onall methods.

Adding a Host Requirement

You canalsomatchon the HTTP hostof the incoming request.For more information, seeHow to Match
a Route Based on the Hostin the Routing component documentation.

PDF brought to you by

generated on July 28, 2016

Chapter 6: Routing | 60

http://sensiolabs.com

Listing 6-13

Listing 6-14

Listing 6-15

Completely Customized Route Matching with Conditions

As you'veseen,a route can be madeto match only certain routing wildcards (via regularexpressions),
HTTP methods, or host names.But the routing systemcan be extendedto have an almost infinite
flexibility using conditions :

1
2
3
4

contact :
path: /contact
defaults : { _controller : AcmeDemoBundle: Main: contact }
condition : "context.getMethod() in ['GET', 'HEAD'] and request.headers.get('User-Agent') matches '/firefox/

i'"

The condition is an expression,and you canlearnmoreabout its syntaxhere:TheExpressionSyntax.
With this, the route won't match unlessthe HTTP method is either GET or HEAD and if the User-
Agentheader matchesfirefox .

You cando anycomplexlogic you needin the expressionby leveragingtwo variablesthat arepassedinto
the expression:
contextcontext

An instanceof RequestContext1, which holds the most fundamentalinformation about the route being
matched.

requestrequest

The SymfonyRequest2 object (seeRequest).

Conditions arenot taken into account when generating a URL.

Expressions are Compiled to PHP

Behind the scenes,expressionsare compiled down to raw PHP. Our examplewould generatethe
following PHP in the cache directory:

1
2
3
4
5
6

if (rtrim ($pathinfo , '/contact') === '' && (
in_array ($context ->getMethod(), array (0 => "GET", 1 => "HEAD"))
&& preg_match("/firefox/i" , $request->headers->get("User-Agent"))

)) {
// ...

}

Becauseof this, usingthe condition keycausesno extraoverheadbeyondthe time it takesfor the
underlying PHP to execute.

Advanced Routing Example

At this point, you have everythingyou need to createa powerful routing structure in Symfony.The
following is an example of just how flexible the routing system can be:

1
2
3
4
5
6
7

// src/AppBundle/Controller/ArticleController.php

// ...
class ArticleController extends Controller
{

/**
* @Route(

1. http://api.symfony.com/master/Symfony/Component/Routing/RequestContext.html
2. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html

PDF brought to you by

generated on July 28, 2016

Chapter 6: Routing | 61

http://sensiolabs.com

8
9

10
11
12
13
14
15
16
17
18
19
20

* "/articles/{_locale}/{year}/{title}.{_format}",
* defaults={"_format": "html"},
* requirements={
* "_locale": "en|fr",
* "_format": "html|rss",
* "year": "\d+"
* }
*)
*/

public function showAction($_locale , $year, $title)
{
}

}

Asyou'veseen,this route will only match if the {_locale} portion of the URL is eitherenor fr and if
the {year} is a number.This route alsoshowshow you canusea dot betweenplaceholdersinsteadof a
slash. URLs matching this route might look like:

¥ /articles/en/2010/my-post

¥ /articles/fr/2010/my-post.rss

¥ /articles/en/2013/my-latest-post.html

The Special_format Routing Parameter

This examplealsohighlights the special_format routing parameter.When using this parameter,
the matched value becomes the "request format" of theRequestobject.

Ultimately, the requestformat is usedfor suchthingsassettingthe Content-Type of the response
(e.g.a json requestformat translatesinto a Content-Type of application/ json). It canalso
be usedin the controller to rendera different templatefor eachvalueof _format . The _format
parameter is a very powerful way to render the same content in different formats.

In Symfonyversionspreviousto 3.0, it is possibleto overridethe requestformat by addinga query
parameternamed_format (for example:/foo/ bar?_format=json). Relyingon this behavior
not only is considereda bad practice but it will complicate the upgradeof your applications to
Symfony 3.

Sometimesyou want to makecertain parts of your routesglobally configurable.Symfonyprovides
you with a way to do this by leveragingservicecontainerparameters.Readmoreabout this in "How
to Use Service Container Parameters in your Routes".

Special Routing Parameters

As you've seen,eachrouting parameteror default value is eventuallyavailableas an argument in the
controller method.Additionally, therearethreeparametersthat arespecial:eachaddsa unique pieceof
functionality inside your application:
_controller_controller

As you'veseen,this parameteris usedto determinewhich controller is executedwhen the route is
matched.

_format_format

Used to set the request format (read more).

_locale_locale

Used to set the locale on the request (read more).

PDF brought to you by

generated on July 28, 2016

Chapter 6: Routing | 62

http://sensiolabs.com

Listing 6-16

Listing 6-17

Controller Naming Pattern
Everyroute must havea _controller parameter,which dictateswhich controller should be executed
whenthat route is matched.This parameterusesasimplestringpatterncalledthe logicalcontrollername,
which Symfonymapsto a specificPHPmethodandclass.The patternhasthreeparts,eachseparatedby
a colon:

bundle:controller :action

For example, a_controller value ofAppBundle:Blog:showmeans:

Bundle Controller Class Method Name

AppBundle BlogController showAction

The controller might look like this:

1
2
3
4
5
6
7
8
9

10
11
12

// src/AppBundle/Controller/BlogController.php
namespaceAppBundle\Controller ;

use Symfony\Bundle\FrameworkBundle\Controller\Controller ;

class BlogController extends Controller
{

public function showAction($slug)
{

// ...
}

}

Notice that Symfonyaddsthe string Controller to the classname(Blog => BlogController) and
Action to the method name (show=> showAction).

You could also refer to this controller using its fully-qualified class name and method:
AppBundle\Controller\BlogController::showAction . But if you follow some simple
conventions, the logical name is more concise and allows more flexibility.

In addition to using the logical nameor the fully-qualified classname,Symfonysupports a third
way of referring to a controller. This method uses just one colon separator (e.g.
service_name:indexAction) and refers to the controller as a service (see How to Define
Controllers as Services).

Route Parameters and Controller Arguments
The route parameters(e.g. {slug}) are especiallyimportant becauseeach is made availableas an
argument to the controller method:

public function showAction($slug)
{

// ...
}

In reality, the entire defaults collection is mergedwith the parametervaluesto form a singlearray.
Each key of that array is available as an argument on the controller.

PDF brought to you by

generated on July 28, 2016

Chapter 6: Routing | 63

http://sensiolabs.com

Listing 6-18

Listing 6-19

Listing 6-20

In other words, for eachargumentof your controller method, Symfonylooks for a route parameterof
that nameand assignsits valueto that argument.In the advancedexampleabove,any combination (in
any order) of the following variables could be used as arguments to theshowAction() method:

¥ $_locale

¥ $year

¥ $title

¥ $_format

¥ $_controller

¥ $_route

Sincethe placeholdersanddefaults collectionaremergedtogether,eventhe $_controller variable
is available. For a more detailed discussion, seeRoute Parameters as Controller Arguments.

The special$_route variable is set to the name of the route that was matched.

You can evenadd extra information to your route definition and accessit within your controller. For
more information on this topic, seeHow to Pass Extra Information from a Route to a Controller.

Including External Routing Resources
All routesareloadedvia a singleconfiguration file - usuallyapp/config/ routing.yml (seeCreating
Routesabove).However,if you userouting annotations,you'll needto point the router to the controllers
with the annotations. This can be done by "importing" directories into the routing configuration:

1
2
3
4

app/config/routing.yml
app:

resource: '@AppBundle/Controller/'
type: annotation # required to enable the Annotation reader for this resource

When importing resourcesfrom YAML, the key (e.g. app) is meaningless.Just be sure that it's
unique so no other lines override it.

The resource key loadsthe givenrouting resource.In this examplethe resourceis a directory, where
the @AppBundleshortcut syntax resolvesto the full path of the AppBundle. When pointing to a
directory, all files in that directory are parsed and put into the routing.

You can also include other routing configuration files, this is often usedto import the routing of
third party bundles:

1
2
3

app/config/routing.yml
app:

resource: '@AcmeOtherBundle/Resources/config/routing.yml'

Prefixing Imported Routes

You can also chooseto provide a "prefix" for the imported routes.For example,supposeyou want to
prefix all routesin the AppBundlewith /site (e.g./site/ blog/ {slug} insteadof /blog/ {slug}):

PDF brought to you by

generated on July 28, 2016

Chapter 6: Routing | 64

http://sensiolabs.com

Listing 6-21

Listing 6-22

Listing 6-23

Listing 6-24

Listing 6-25

1
2
3
4
5

app/config/routing.yml
app:

resource: '@AppBundle/Controller/'
type: annotation
prefix : /site

The path of eachroute beingloadedfrom the new routing resourcewill now beprefixedwith the string
/site .

Adding a Host Requirement to Imported Routes

You can set the host regexon imported routes. For more information, seeUsing Host Matching of
Imported Routes.

Visualizing & Debugging Routes
While adding and customizingroutes, it's helpful to be able to visualizeand get detailed information
about your routes.A greatway to seeeveryroute in your application is via the debug:router console
command. Execute the command by running the following from the root of your project.

1 $ php bin/console debug:router

This command will print a helpful list ofall the configured routes in your application:

1
2
3
4
5
6

homepage ANY /
contact GET /contact
contact_process POST /contact
article_show ANY /articles/{_locale}/{year}/{title}.{_format}
blog ANY /blog/{page}
blog_show ANY /blog/{slug}

You can also get very specific information on a single route by including the route name after the
command:

1 $ php bin/console debug:router article_show

Likewise, if you want to test whether a URL matchesa given route, you can usethe router:match
console command:

1 $ php bin/console router:match /blog/my-latest-post

This command will print which route the URL matches.

1 Route "blog_show" matches

Generating URLs
The routing systemshould alsobe usedto generateURLs. In reality, routing is a bidirectional system:
mapping the URL to a controller+parametersand a route+parametersback to a URL. The match() 3

3. http://api.symfony.com/master/Symfony/Component/Routing/Router.html#method_match

PDF brought to you by

generated on July 28, 2016

Chapter 6: Routing | 65

http://sensiolabs.com

Listing 6-26

Listing 6-27

Listing 6-28

Listing 6-29

and generate() 4 methodsform this bidirectional system.Take the blog_showexampleroute from
earlier:

1
2
3
4
5
6
7
8
9

10

$params= $this ->get('router') ->match('/blog/my-blog-post');
// array(
// 'slug' => 'my-blog-post',
// '_controller' => 'AppBundle:Blog:show',
//)

$uri = $this ->get('router') ->generate('blog_show' , array (
'slug' => 'my-blog-post'

));
// /blog/my-blog-post

To generatea URL, you needto specifythe nameof the route (e.g.blog_show) and anywildcards(e.g.
slug = my-blog-post) usedin the path for that route. With this information, anyURL caneasilybe
generated:

1
2
3
4
5
6
7
8
9

10
11
12

class MainController extends Controller
{

public function showAction($slug)
{

// ...

$url = $this ->generateUrl (
'blog_show' ,
array ('slug' => 'my-blog-post')

);
}

}

The generateUrl() method defined in the baseController 5 classis just a shortcut for this
code:

$url = $this ->container ->get('router') ->generate(
'blog_show' ,
array ('slug' => 'my-blog-post')

);

In an upcoming section, you'll learn how to generate URLs from inside templates.

If the front-end of your application usesAjax requests,you might want to beableto generateURLs
in JavaScriptbasedon your routing configuration. By using the FOSJsRoutingBundle6, you can do
exactly that:

1
2
3
4

var url = Routing. generate(
'blog_show' ,
{ 'slug' : 'my-blog-post' }

);

For more information, see the documentation for that bundle.

Generating URLs with Query Strings

Thegenerate methodtakesanarrayof wildcard valuesto generatethe URI. But if you passextraones,
they will be added to the URI as a query string:

4. http://api.symfony.com/master/Symfony/Component/Routing/Router.html#method_generate

5. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/Controller.html

6. https://github.com/FriendsOfSymfony/FOSJsRoutingBundle

PDF brought to you by

generated on July 28, 2016

Chapter 6: Routing | 66

http://sensiolabs.com

Listing 6-30

Listing 6-31

Listing 6-32

Listing 6-33

Listing 6-34

1
2
3
4
5

$this ->get('router') ->generate('blog' , array (
'page' => 2,
'category' => 'Symfony'

));
// /blog/2?category=Symfony

Generating URLs from a Template

The most common placeto generatea URL is from within a templatewhen linking betweenpagesin
your application. This is done just as before, but using thepath() function to generate a relative URL:

1
2
3

Read this blog post.

If you are generatingthe route inside a <script> element, it's a good practice to escapeit for
JavaScript:

1
2
3

<script>
var route = " {{ path('blog_show' , { 'slug' : 'my-blog-post' })| escape('js') }} " ;
</script>

Generating Absolute URLs

By default, the router will generaterelative URLs (e.g. /blog). From a controller, simply pass
UrlGeneratorInterface::ABSOLUTE_URLto the third argumentof thegenerateUrl() method:

use Symfony\Component\Routing\Generator\UrlGeneratorInterface ;

$this ->generateUrl ('blog_show' , array ('slug' => 'my-blog-post'), UrlGeneratorInterface :: ABSOLUTE_URL);
// http://www.example.com/blog/my-blog-post

From a template, simply use the url() function (which generatesan absoluteURL) rather than the
path() function (which generates a relative URL):

1
2
3

Read this blog post.

The host that's usedwhen generatingan absoluteURL is automaticallydetectedusing the current
Requestobject. When generatingabsoluteURLs from outside the web context (for instancein a
consolecommand)this doesn'twork. SeeHow to GenerateURLsfrom the Consoleto learn how to
solve this problem.

Summary
Routing is a systemfor mappingthe URL of incoming requeststo the controller function that should be
called to processthe request.It both allows you to specifybeautiful URLs and keepsthe functionality
of your application decoupledfrom thoseURLs.Routing is a bidirectional mechanism,meaningthat it
should also be used to generate URLs.

PDF brought to you by

generated on July 28, 2016

Chapter 6: Routing | 67

http://sensiolabs.com

Learn more from the Cookbook
¥ How to Force Routes to always Use HTTPS or HTTP
¥ How to Allow a "/" Character in a Route Parameter
¥ How to Configure a Redirect without a custom Controller
¥ How to Use HTTP Methods beyond GET and POST in Routes
¥ How to Use Service Container Parameters in your Routes
¥ How to Create a custom Route Loader
¥ Redirect URLs with a Trailing Slash
¥ How to Pass Extra Information from a Route to a Controller

PDF brought to you by

generated on July 28, 2016

Chapter 6: Routing | 68

http://sensiolabs.com

Listing 7-1

Chapter 7

Creating and Using Templates

As you know, the controller is responsiblefor handling each request that comes into a Symfony
application. In reality, the controller delegatesmost of the heavywork to other placesso that codecan
be testedand reused.When a controller needsto generateHTML, CSSor any other content, it hands
the work off to the templatingengine.In this chapter,you'll learnhow to write powerful templatesthat
canbeusedto return content to the user,populateemailbodies,andmore.You'll learnshortcuts,clever
ways to extend templates and how to reuse template code.

How to render templates is covered in thecontroller page of the book.

Templates
A templateis simply a text file that cangenerateany text-basedformat (HTML, XML, CSV,LaTeX...).
The most familiar type of templateis a PHPtemplate- a text file parsedby PHPthat containsa mix of
text and PHP code:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

<!DOCTYPE html>
<html>

<head>
<title> Welcome to Symfony!</title>

</head>
<body>

<h1><?php echo $page_title ?></h1>

<ul id= "navigation" >
<?php foreach ($navigation as $item) : ?>

<a href= " <?php echo $item->getHref () ?>" >

<?php echo $item->getCaption () ?>

<?php endforeach ?>

</body>

</html>

PDF brought to you by

generated on July 28, 2016

Chapter 7: Creating and Using Templates | 69

http://sensiolabs.com

Listing 7-2

Listing 7-3

Listing 7-4

But Symfonypackagesanevenmorepowerful templatinglanguagecalledTwig1. Twig allowsyou to write
concise,readabletemplatesthat aremore friendly to web designersand, in severalways,morepowerful
than PHP templates:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

<!DOCTYPE html>
<html>

<head>
<title> Welcome to Symfony!</title>

</head>
<body>

<h1>{{ page_title }} </h1>

<ul id= "navigation" >
{% for item in navigation %}

{{ item.caption }}
{% endfor %}

</body>

</html>

Twig defines three types of special syntax:
{{ ... }}{{ ... }}

"Says something": prints a variable or the result of an expression to the template.

{% ... %}{% ... %}

"Doessomething":a tag that controlsthe logic of the template;it is usedto executestatementssuch
as for-loops for example.

{# ... #}{# ... #}

"Comment something":it's the equivalentof the PHP /* comment*/ syntax.It's usedto add singleor
multi-line comments. The content of the comments isn't included in the rendered pages.

Twig alsocontainsfilters , which modify contentbeforebeingrendered.The following makesthe title
variable all uppercase before rendering it:

1 {{ title | upper }}

Twig comeswith a long list of tags2 and filters3 that areavailableby default. You canevenaddyour own
extensions4 to Twig as needed.

Registering a Twig extension is as easy as creating a new service and tagging it with
twig.extension tag.

As you'll seethroughout the documentation,Twig also supports functions and new functions can be
easilyadded.For example,the following usesastandardfor tagandthecycle function to print ten div
tags, with alternatingodd, evenclasses:

1
2
3
4
5

{% for i in 0..10 %}
<div class= " {{ cycle (['odd' , 'even'], i) }} " >

<!-- some HTML here -->
</div>

{% endfor %}

Throughout this chapter, template examples will be shown in both Twig and PHP.

1. http://twig.sensiolabs.org

2. http://twig.sensiolabs.org/doc/tags/index.html

3. http://twig.sensiolabs.org/doc/filters/index.html

4. http://twig.sensiolabs.org/doc/advanced.html#creating-an-extension

PDF brought to you by

generated on July 28, 2016

Chapter 7: Creating and Using Templates | 70

http://sensiolabs.com

Listing 7-5

Listing 7-6

If you do chooseto not useTwig and you disableit, you'll needto implement your own exception
handler via thekernel.exception event.

Why Twig?

Twig templatesare meant to be simple and won't processPHP tags.This is by design:the Twig
templatesystemis meant to expresspresentation,not program logic. The more you useTwig, the
more you'll appreciateand benefit from this distinction. And of course,you'll be loved by web
designers everywhere.

Twig canalsodo things that PHPcan't, suchaswhitespacecontrol, sandboxing,automaticHTML
escaping,manualcontextualoutput escaping,and the inclusion of customfunctions and filters that
only affect templates.Twig contains little featuresthat make writing templateseasierand more
concise. Take the following example, which combines a loop with a logicalif statement:

1
2
3
4
5
6
7

{% for user in users if user.active %}

 {{ user.username }}
{% else %}

 No users found
{% endfor %}

Twig Template Caching

Twig is fast. EachTwig template is compiled down to a native PHP classthat is renderedat runtime.
The compiled classesare located in the var/ cache/{environment}/ twig directory (where
{environment} is the environment, such as dev or prod) and in somecasescan be useful while
debugging. SeeEnvironmentsfor more information on environments.

When debugmodeis enabled(commonin thedevenvironment),aTwig templatewill beautomatically
recompiledwhen changesare madeto it. This meansthat during developmentyou can happily make
changesto a Twig templateand instantly seethe changeswithout needingto worry about clearingany
cache.

When debugmodeis disabled(common in the prod environment),however,you must clearthe Twig
cachedirectory so that the Twig templateswill regenerate.Rememberto do this when deployingyour
application.

Template Inheritance and Layouts
More often than not, templatesin a project sharecommon elements,like the header,footer, sidebaror
more. In Symfony,this problem is thought about differently: a templatecan be decoratedby another
one.This works exactlythe sameasPHPclasses:templateinheritanceallowsyou to build abase"layout"
templatethat containsall the common elementsof your site definedasblocks (think "PHP classwith
basemethods").A child templatecanextendthe baselayout and overrideany of its blocks (think "PHP
subclass that overrides certain methods of its parent class").

First, build a base layout file:

1
2
3
4
5

{# app/Resources/views/base.html.twig #}
<!DOCTYPE html>
<html>

<head>
<meta charset= "UTF-8">

PDF brought to you by

generated on July 28, 2016

Chapter 7: Creating and Using Templates | 71

http://sensiolabs.com

Listing 7-7

Listing 7-8

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

<title> {% block title %}Test Application {% endblock %}</title>
</head>
<body>

<div id= "sidebar" >
{% block sidebar %}

Home
Blog

{% endblock %}

</div>

<div id= "content" >
{% block body %}{%endblock %}

</div>
</body>

</html>

Though the discussionabout template inheritancewill be in terms of Twig, the philosophy is the
same between Twig and PHP templates.

This templatedefinesthe baseHTML skeletondocumentof a simpletwo-column page.In this example,
three{% block %}areasaredefined(title , sidebar and body). Eachblock maybeoverriddenby
a child templateor left with its default implementation.This templatecould alsobe rendereddirectly.
In that casethe title , sidebar and bodyblocks would simply retain the default valuesusedin this
template.

A child template might look like this:

1
2
3
4
5
6
7
8
9

10
11

{# app/Resources/views/blog/index.html.twig #}
{% extends 'base.html.twig' %}

{% block title %}My cool blog posts {% endblock %}

{% block body %}
{% for entry in blog_entries %}

<h2>{{ entry.title }} </h2>
<p>{{ entry.body }} </p>

{% endfor %}
{% endblock %}

Theparenttemplateis identified by aspecialstringsyntax(base.html.twig). This path is relative
to the app/Resources/views directory of the project. You could also use the logical name
equivalent:::base.html.twig . This naming convention is explainedfully in TemplateNaming
and Locations.

The key to template inheritanceis the {% extends %}tag. This tells the templating engineto first
evaluatethe basetemplate,which setsup the layout and definesseveralblocks. The child template is
then rendered,at which point the title and bodyblocksof the parentarereplacedby thosefrom the
child. Depending on the value ofblog_entries , the output might look like this:

1
2
3
4
5
6
7
8

<!DOCTYPE html>
<html>

<head>
<meta charset= "UTF-8">
<title> My cool blog posts </title>

</head>
<body>

<div id= "sidebar" >

PDF brought to you by

generated on July 28, 2016

Chapter 7: Creating and Using Templates | 72

http://sensiolabs.com

Listing 7-9

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Home
Blog

</div>

<div id= "content" >
<h2>My first post </h2>
<p>The body of the first post. </p>

<h2>Another post </h2>
<p>The body of the second post. </p>

</div>
</body>

</html>

Notice that sincethe child templatedidn't definea sidebar block, the valuefrom the parent template
is used instead. Content within a{% block %} tag in a parent template is always used by default.

You can use as many levels of inheritance as you want. In the next section, a common three-level
inheritance model will be explained along with how templates are organized inside a Symfony project.

When working with template inheritance, here are some tips to keep in mind:

¥ If you use{% extends %} in a template, it must be the first tag in that template;

¥ The more {% block %} tags you have in your basetemplates,the better. Remember,child
templatesdon't haveto define all parent blocks, so createasmany blocks in your basetemplates
asyou want and giveeacha sensibledefault. The more blocksyour basetemplateshave,the more
flexible your layout will be;

¥ If you find yourself duplicating content in a number of templates,it probably meansyou should
movethat content to a {% block %}in a parenttemplate.In somecases,a bettersolution maybe
to move the content to a new template andinclude it (seeIncluding other Templates);

¥ If you needto get the content of a block from the parent template,you canusethe {{ parent()
}} function. This is usefulif you want to addto the contentsof aparentblock insteadof completely
overriding it:

1
2
3
4
5
6
7

{% block sidebar %}
<h3>Table of Contents </h3>

{# ... #}

{{ parent () }}
{% endblock %}

Template Naming and Locations
By default, templates can live in two different locations:
app/Resources/views/app/Resources/views/

Theapplication'sviews directorycancontainapplication-widebasetemplates(i.e. your application's
layouts and templatesof the application bundle) as well as templatesthat override third party
bundle templates (seeOverriding Bundle Templates).

path/to/bundle/Resources/views/path/to/bundle/Resources/views/

Eachthird party bundle housesits templatesin its Resources/views/ directory (and subdirectories).
When you plan to shareyour bundle,you shouldput the templatesin the bundle insteadof the app/

directory.

PDF brought to you by

generated on July 28, 2016

Chapter 7: Creating and Using Templates | 73

http://sensiolabs.com

Most of the templatesyou'll use live in the app/Resources/views/ directory. The path you'll use
will be relative to this directory. For example, to render/extend app/Resources/views/
base.html.twig , you'll use the base.html.twig path and to render/extend app/Resources/
views/blog/index.html.twig , you'll use theblog/index.html.twig path.

Referencing Templates in a Bundle

Symfonyusesa bundle:directory :filename string syntax for templatesthat live inside a bundle. This
allows for several types of templates, each which lives in a specific location:

¥ AcmeBlogBundle:Blog:index.html.twig : This syntax is used to specify a template for a
specific page. The three parts of the string, each separated by a colon (:), mean the following:

¥ AcmeBlogBundle: (bundle) the template lives inside the AcmeBlogBundle (e.g.src/Acme/BlogBundle);
¥ Blog: (directory) indicates that the template lives inside theBlog subdirectory ofResources/views;
¥ index.html.twig : (filename) the actual name of the file isindex.html.twig .

Assumingthat the AcmeBlogBundlelivesat src/ Acme/BlogBundle, the final path to the layout
would besrc/Acme/BlogBundle/Resources/views/Blog/index.html.twig .

¥ AcmeBlogBundle::layout.html.twig : This syntaxrefersto a basetemplatethat'sspecificto
the AcmeBlogBundle.Sincethe middle, "directory", portion is missing(e.g. Blog), the template
lives at Resources/views/ layout.html.twig inside AcmeBlogBundle.Yes, there are 2
colons in the middle of the string when the "controller" subdirectory part is missing.

In the Overriding Bundle Templates section, you'll find out how each template living inside the
AcmeBlogBundle,for example,can be overriddenby placing a templateof the samenamein the app/
Resources/AcmeBlogBundle/views/ directory. This givesthe power to override templatesfrom
any vendor bundle.

Hopefully the templatenamingsyntaxlooks familiar - it's similar to the namingconventionusedto
refer toController Naming Pattern.

Template Suffix

Every template name also has two extensions that specify theformat andenginefor that template.

Filename Format Engine

blog/index.html.twig HTML Twig

blog/index.html.php HTML PHP

blog/index.css.twig CSS Twig

Bydefault,anySymfonytemplatecanbewritten in eitherTwig or PHP,andthe lastpart of the extension
(e.g..twig or .php) specifieswhich of thesetwo enginesshouldbeused.The first part of the extension,
(e.g. .html , .css , etc) is the final format that the template will generate.Unlike the engine,which
determineshow Symfonyparsesthe template,this is simplyanorganizationaltacticusedin casethesame
resourceneedsto berenderedasHTML (index.html.twig), XML (index.xml.twig), or anyother
format. For more information, read theTemplate Formatssection.

PDF brought to you by

generated on July 28, 2016

Chapter 7: Creating and Using Templates | 74

http://sensiolabs.com

Listing 7-10

Listing 7-11

The available "engines" can be configured and even new engines added. See Templating
Configuration for more details.

Tags and Helpers
You alreadyunderstandthe basicsof templates,how they'renamedandhow to usetemplateinheritance.
Thehardestpartsarealreadybehindyou. In this section,you'll learnabouta largegroupof toolsavailable
to helpperform the mostcommontemplatetaskssuchasincluding other templates,linking to pagesand
including images.

Symfony comesbundled with severalspecializedTwig tags and functions that easethe work of the
template designer.In PHP, the templating systemprovides an extensiblehelpersystemthat provides
useful features in a template context.

You'vealreadyseena few built-in Twig tags({% block %}& {% extends %}) aswell asan example
of a PHP helper ($view['slots']). Here you will learn a few more.

Including other Templates

You'll often want to include the sametemplateor codefragmenton severalpages.For example,in an
applicationwith "newsarticles",the templatecodedisplayinganarticlemight beusedon thearticledetail
page, on a page displaying the most popular articles, or in a list of the latest articles.

When you need to reusea chunk of PHP code, you typically move the code to a new PHP classor
function. The sameis true for templates.By moving the reusedtemplatecodeinto its own template,it
can be included from any other template. First, create the template that you'll need to reuse.

1
2
3
4
5
6
7

{# app/Resources/views/article/article_details.html.twig #}
<h2>{{ article.title }} </h2>
<h3 class= "byline" >by {{ article.authorName }} </h3>

<p>
{{ article.body }}

</p>

Including this template from any other template is simple:

1
2
3
4
5
6
7
8
9

10

{# app/Resources/views/article/list.html.twig #}
{% extends 'layout.html.twig' %}

{% block body %}
<h1>Recent Articles <h1>

{% for article in articles %}
{{ include ('article/article_details.html.twig' , { 'article' : article }) }}

{% endfor %}
{% endblock %}

The templateis includedusingthe {{ include() }} function. Notice that the templatenamefollows
thesametypical convention.Thearticle_details.html.twig templateusesanarticle variable,
which we passto it. In this case,you could avoid doing this entirely, asall of the variablesavailablein
list.html.twig arealsoavailablein article_details.html.twig (unlessyou setwith_context5

to false).

5. http://twig.sensiolabs.org/doc/functions/include.html

PDF brought to you by

generated on July 28, 2016

Chapter 7: Creating and Using Templates | 75

http://sensiolabs.com

Listing 7-12

Listing 7-13

Listing 7-14

The {'article': article} syntaxis the standardTwig syntaxfor hashmaps(i.e. anarraywith
namedkeys).If you neededto passin multiple elements,it would look like this: {'foo': foo,
'bar': bar} .

Embedding Controllers

In somecases,you needto do more than include a simpletemplate.Supposeyou havea sidebarin your
layout that containsthe threemost recentarticles.Retrievingthe threearticlesmay include queryingthe
database or performing other heavy logic that can't be done from within a template.

The solution is to simply embedthe result of an entire controller from your template. First, createa
controller that renders a certain number of recent articles:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// src/AppBundle/Controller/ArticleController.php
namespaceAppBundle\Controller ;

// ...

class ArticleController extends Controller
{

public function recentArticlesAction ($max= 3)
{

// make a database call or other logic
// to get the "$max" most recent articles
$articles = ... ;

return $this ->render(
'article/recent_list.html.twig' ,
array ('articles' => $articles)

);
}

}

The recent_list template is perfectly straightforward:

1
2
3
4
5
6

{# app/Resources/views/article/recent_list.html.twig #}
{% for article in articles %}

{{ article.title }}

{% endfor %}

Notice that the article URL is hardcodedin this example(e.g. /article/ *slug*). This is a bad
practice. In the next section, you'll learn how to do this correctly.

To include the controller, you'll needto refer to it using the standardstring syntax for controllers (i.e.
bundle:controller :action):

1
2
3
4
5
6
7
8
9

{# app/Resources/views/base.html.twig #}

{# ... #}
<div id= "sidebar" >

{{ render(controller (
'AppBundle:Article:recentArticles' ,
{ 'max' : 3 }

)) }}
</div>

Wheneveryou find that you needa variable or a pieceof information that you don't haveaccessto
in a template,considerrenderinga controller. Controllers are fast to executeand promote good code

PDF brought to you by

generated on July 28, 2016

Chapter 7: Creating and Using Templates | 76

http://sensiolabs.com

Listing 7-15

Listing 7-16

Listing 7-17

Listing 7-18

Listing 7-19

organizationand reuse.Of course,like all controllers, they should ideally be "skinny", meaningthat as
much code as possible lives in reusableservices.

Asynchronous Content with hinclude.js

Controllerscanbeembeddedasynchronouslyusingthe hinclude.js6 JavaScriptlibrary. As the embedded
content comesfrom anotherpage(or controller for that matter), Symfonyusesa versionof the standard
render function to configurehinclude tags:

1
2

{{ render_hinclude (controller ('...')) }}
{{ render_hinclude (url ('...')) }}

hinclude.js7 needs to be included in your page to work.

When usingacontroller insteadof aURL, you must enablethe Symfonyfragments configuration:

1
2
3
4

app/config/config.yml
framework:

...
fragments: { path: /_fragment }

Default content (while loading or if JavaScriptis disabled) can be set globally in your application
configuration:

1
2
3
4
5

app/config/config.yml
framework:

...
templating :

hinclude_default_template : hinclude.html.twig

You candefinedefault templatesper render function (which will overrideany global default template
that is defined):

1
2
3

{{ render_hinclude (controller ('...'), {
'default' : 'default/content.html.twig'

}) }}

Or you can also specify a string to display as the default content:

1 {{ render_hinclude (controller ('...'), { 'default' : 'Loading...' }) }}

Linking to Pages

Creatinglinks to other pagesin your application is oneof the most commonjobs for a template.Instead
of hardcodingURLsin templates,usethepath Twig function (or the router helperin PHP)to generate
URLsbasedon the routing configuration. Later, if you want to modify the URL of a particular page,all
you'll needto do is changethe routing configuration; the templateswill automaticallygeneratethe new
URL.

First, link to the "_welcome" page, which is accessible via the following routing configuration:

6. http://mnot.github.io/hinclude/

7. http://mnot.github.io/hinclude/

PDF brought to you by

generated on July 28, 2016

Chapter 7: Creating and Using Templates | 77

http://sensiolabs.com

Listing 7-20

Listing 7-21

Listing 7-22

Listing 7-23

Listing 7-24

Listing 7-25

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// src/AppBundle/Controller/WelcomeController.php

// ...
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route ;

class WelcomeController extends Controller
{

/**
* @Route("/", name="_welcome")
*/

public function indexAction ()
{

// ...
}

}

To link to the page, just use thepath Twig function and refer to the route:

1 Home

As expected, this will generate the URL/ . Now, for a more complicated route:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// src/AppBundle/Controller/ArticleController.php

// ...
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route ;

class ArticleController extends Controller
{

/**
* @Route("/article/{slug}", name="article_show")
*/

public function showAction($slug)
{

// ...
}

}

In this case,you needto specifyboth the route name(article_show) and a value for the {slug}
parameter.Usingthis route, revisit the recent_list templatefrom the previoussectionand link to the
articles correctly:

1
2
3
4
5
6

{# app/Resources/views/article/recent_list.html.twig #}
{% for article in articles %}

{{ article.title }}

{% endfor %}

You can also generate an absolute URL by using theurl function:

1 Home

Linking to Assets

Templatesalsocommonly refer to images,JavaScript,stylesheetsand other assets.Of courseyou could
hard-codethe path to theseassets(e.g. /images/ logo.png), but Symfonyprovidesa more dynamic
option via theasset Twig function:

PDF brought to you by

generated on July 28, 2016

Chapter 7: Creating and Using Templates | 78

http://sensiolabs.com

Listing 7-26

Listing 7-27

Listing 7-28

1
2
3

<link href= " {{ asset ('css/blog.css') }} " rel= "stylesheet" />

The asset function's main purposeis to makeyour application moreportable. If your application lives
at the root of your host (e.g.http://example.com), then the renderedpaths should be /images/
logo.png . But if your application lives in a subdirectory (e.g. http://example.com/ my_app),
eachassetpath should renderwith the subdirectory(e.g. /my_app/images/logo.png). The asset
function takescareof this by determininghow your application is beingusedand generatingthe correct
paths accordingly.

Additionally, if you usethe asset function, Symfonycan automaticallyappenda query string to your
asset,in order to guaranteethat updatedstatic assetswon't be loadedfrom cacheafter beingdeployed.
For example,/images/ logo.png might look like /images/ logo.png?v2. For more information,
see theversionconfiguration option.

If you need absolute URLs for assets, use theabsolute_url() Twig function as follows:

1

Including Stylesheets and JavaScripts in Twig
No sitewould be completewithout including JavaScriptfiles and stylesheets.In Symfony,the inclusion
of these assets is handled elegantly by taking advantage of Symfony's template inheritance.

This section will teach you the philosophy behind including stylesheetand JavaScriptassetsin
Symfony. Symfony is also compatible with another library, called Assetic, which follows this
philosophy but allows you to do much more interesting things with those assets.For more
information on using Assetic seeHow to Use Assetic for Asset Management.

Start by adding two blocks to your basetemplatethat will hold your assets:one calledstylesheets
insidetheheadtagandanothercalledjavascripts just abovethe closingbodytag.Theseblockswill
contain all of the stylesheets and JavaScripts that you'll need throughout your site:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

{# app/Resources/views/base.html.twig #}
<html>

<head>
{# ... #}

{% block stylesheets %}
<link href= " {{ asset ('css/main.css') }} " rel= "stylesheet" />

{% endblock %}
</head>
<body>

{# ... #}

{% block javascripts %}
<script src=" {{ asset('js/main.js') }} " ></script>

{% endblock %}
</body>

</html>

That's easyenough! But what if you need to include an extra stylesheetor JavaScriptfrom a child
template?For example,supposeyou have a contact pageand you need to include a contact.css
stylesheetjuston that page. From inside that contact page's template, do the following:

PDF brought to you by

generated on July 28, 2016

Chapter 7: Creating and Using Templates | 79

http://sensiolabs.com

Listing 7-29

Listing 7-30

1
2
3
4
5
6
7
8
9

10

{# app/Resources/views/contact/contact.html.twig #}
{% extends 'base.html.twig' %}

{% block stylesheets %}
{{ parent () }}

<link href= " {{ asset ('css/contact.css') }} " rel= "stylesheet" />
{% endblock %}

{# ... #}

In the child template, you simply override the stylesheets block and put your new stylesheettag
inside of that block. Of course,sinceyou want to add to the parent block's content (and not actually
replaceit), you should usethe parent() Twig function to include everythingfrom the stylesheets
block of the base template.

You canalsoinclude assetslocatedin your bundles'Resources/public folder. You will needto run
the php bin/ console assets:install target [--symlink] command,which moves(or
symlinks) files into the correct location. (target is by default "web").

1 <link href= " {{ asset ('bundles/acmedemo/css/contact.css') }} " rel= "stylesheet" />

The end result is a page that includes both themain.css andcontact.css stylesheets.

Global Template Variables
During eachrequest,Symfonywill set a global templatevariableapp in both Twig and PHPtemplate
enginesby default. The appvariable is a GlobalVariables 8 instancewhich will give you accessto
some application specific variables automatically:
app.userapp.user

The representationof the current useror null if there is none.The valuestoredin this variablecan
bea UserInterface 9 object,anyother objectwhich implementsa __toString() methodor evena regular
string.

app.requestapp.request

The Request10 object that representsthe current request(dependingon your application, this canbe
a sub-request or a regular request, as explained later).

app.sessionapp.session

The Session11 object that represents the current user's session ornull if there is none.

app.environmentapp.environment

The name of the current environment (dev, prod, etc).

app.debugapp.debug

True if in debug mode. False otherwise.

1
2
3
4
5

<p>Username:{{ app.user.username }} </p>
{% if app.debug %}

<p>Request method: {{ app.request.method }} </p>
<p>Application Environment: {{ app.environment }} </p>

{% endif %}

8. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Templating/GlobalVariables.html
9. http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserInterface.html
10. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html
11. http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html

PDF brought to you by

generated on July 28, 2016

Chapter 7: Creating and Using Templates | 80

http://sensiolabs.com

Listing 7-31

Listing 7-32

Listing 7-33

Listing 7-34

You can add your own global template variables. See the cookbook example onGlobal Variables.

Configuring and Using thetemplating Service
The heartof the templatesystemin Symfonyis the templatingEngine. This specialobject is responsible
for rendering templatesand returning their content. When you render a template in a controller, for
example, you're actually using the templating engine service. For example:

return $this ->render('article/index.html.twig');

is equivalent to:

1
2
3
4
5
6

use Symfony\Component\HttpFoundation\Response;

$engine = $this ->container ->get('templating');
$content = $engine->render('article/index.html.twig');

return $response = new Response($content);

The templating engine(or "service")is preconfiguredto work automatically inside Symfony.It can, of
course, be configured further in the application configuration file:

1
2
3
4

app/config/config.yml
framework:

...
templating : { engines: ['twig'] }

Several configuration options are available and are covered in theConfiguration Appendix.

The twig engine is mandatory to use the webprofiler (as well as many third-party bundles).

Overriding Bundle Templates
The Symfony community prides itself on creating and maintaining high quality bundles (see
KnpBundles.com12) for a largenumber of different features.Once you usea third-party bundle, you'll
likely need to override and customize one or more of its templates.

Supposeyou'veinstalled the imaginaryopen-sourceAcmeBlogBundlein your project. And while you're
really happy with everything, you want to override the blog "list" page to customize the markup
specificallyfor your application. By digging into the Blog controller of the AcmeBlogBundle,you find
the following:

1
2
3
4
5
6
7
8

public function indexAction ()
{

// some logic to retrieve the blogs
$blogs = ... ;

$this ->render(
'AcmeBlogBundle:Blog:index.html.twig' ,
array ('blogs' => $blogs)

12. http://knpbundles.com

PDF brought to you by

generated on July 28, 2016

Chapter 7: Creating and Using Templates | 81

http://sensiolabs.com

9
10

);
}

When the AcmeBlogBundle:Blog:index.html.twig is rendered,Symfonyactually looks in two
different locations for the template:

1. app/Resources/AcmeBlogBundle/views/Blog/index.html.twig

2. src/Acme/BlogBundle/Resources/views/Blog/index.html.twig

To overridethe bundle template,just copy the index.html.twig templatefrom the bundle to app/
Resources/AcmeBlogBundle/views/ Blog/ index.html.twig (the app/Resources/
AcmeBlogBundledirectory won't exist, so you'll needto createit). You're now free to customizethe
template.

If you add a template in a new location, you may needto clearyour cache(php bin/ console
cache:clear), even if you are in debug mode.

This logic also appliesto basebundle templates.Supposealso that eachtemplate in AcmeBlogBundle
inherits from abasetemplatecalledAcmeBlogBundle::layout.html.twig . Justasbefore,Symfony
will look in the following two places for the template:

1. app/Resources/AcmeBlogBundle/views/layout.html.twig

2. src/Acme/BlogBundle/Resources/views/layout.html.twig

Once again, to override the template, just copy it from the bundle to app/Resources/
AcmeBlogBundle/views/ layout.html.twig . You're now free to customizethis copy asyou see
fit.

If you take a step back, you'll seethat Symfony always starts by looking in the app/Resources/
{BUNDLE_NAME}/views/ directory for a template. If the template doesn't exist there, it continues
by checkinginside the Resources/views directory of the bundle itself. This meansthat all bundle
templates can be overridden by placing them in the correctapp/Resourcessubdirectory.

You can also override templates from within a bundle by using bundle inheritance. For more
information, seeHow to Use Bundle Inheritance to Override Parts of a Bundle.

Overriding Core Templates

Sincethe SymfonyFrameworkitself is just a bundle, coretemplatescanbe overriddenin the sameway.
For example, the core TwigBundle contains a number of different "exception" and "error" templates
that can be overridden by copying each from the Resources/views/ Exception directory of the
TwigBundle to, you guessed it, theapp/Resources/TwigBundle/views/Exception directory.

Three-level Inheritance
One commonway to useinheritanceis to usea three-levelapproach.This method works perfectlywith
the three different types of templates that were just covered:

¥ Createanapp/Resources/views/ base.html.twig file that containsthe main layout for your
application (like in the previous example). Internally, this template is calledbase.html.twig ;

¥ Createa templatefor each"section"of your site.For example,the blog functionality would havea
template calledblog/layout.html.twig that contains only blog section-specific elements;

PDF brought to you by

generated on July 28, 2016

Chapter 7: Creating and Using Templates | 82

http://sensiolabs.com

Listing 7-35

Listing 7-36

Listing 7-37

Listing 7-38

Listing 7-39

Listing 7-40

1
2
3
4
5
6
7
8

{# app/Resources/views/blog/layout.html.twig #}
{% extends 'base.html.twig' %}

{% block body %}
<h1>Blog Application </h1>

{% block content %}{%endblock %}
{% endblock %}

¥ Createindividual templatesfor eachpageand makeeachextendthe appropriatesectiontemplate.
For example,the "index" pagewould becalledsomethingcloseto blog/ index.html.twig and
list the actual blog posts.

1
2
3
4
5
6
7
8
9

{# app/Resources/views/blog/index.html.twig #}
{% extends 'blog/layout.html.twig' %}

{% block content %}
{% for entry in blog_entries %}

<h2>{{ entry.title }} </h2>
<p>{{ entry.body }} </p>

{% endfor %}
{% endblock %}

Notice that this template extends the section template (blog/ layout.html.twig) which in turn
extendsthe baseapplication layout (base.html.twig). This is the common three-levelinheritance
model.

When building your application, you may chooseto follow this method or simply make each page
templateextendthe baseapplication templatedirectly (e.g.{% extends 'base.html.twig' %}).
The three-templatemodel is abest-practicemethodusedby vendorbundlessothat the basetemplatefor
a bundle can be easily overridden to properly extend your application's base layout.

Output Escaping
When generatingHTML from a template, there is alwaysa risk that a template variablemay output
unintended HTML or dangerousclient-sidecode. The result is that dynamic content could break the
HTML of the resulting pageor allow a malicious user to perform a CrossSiteScripting13 (XSS)attack.
Consider this classic example:

1 Hello {{ name}}

Imagine the user enters the following code for their name:

1 <script> alert ('hello!') </script>

Without any output escaping, the resulting template will cause a JavaScript alert box to pop up:

1 Hello <script> alert ('hello!') </script>

And while this seemsharmless,if a user can get this far, that sameuser should also be able to write
JavaScript that performs malicious actions inside the secure area of an unknowing, legitimate user.

The answerto the problem is output escaping.With output escapingon, the sametemplatewill render
harmlessly, and literally print thescript tag to the screen:

13. https://en.wikipedia.org/wiki/Cross-site_scripting

PDF brought to you by

generated on July 28, 2016

Chapter 7: Creating and Using Templates | 83

http://sensiolabs.com

Listing 7-41

Listing 7-42

Listing 7-43

Listing 7-44

1 Hello < script > alert('hello! ') < /script >

The Twig and PHP templating systemsapproachthe problem in different ways. If you're using Twig,
output escapingis on by defaultandyou'reprotected.In PHP,output escapingis not automatic,meaning
you'll need to manually escape where necessary.

Output Escaping in Twig

If you'reusingTwig templates,then output escapingis on by default. This meansthat you'reprotected
out-of-the-box from the unintentional consequencesof user-submittedcode. By default, the output
escaping assumes that content is being escaped for HTML output.

In somecases,you'll needto disableoutput escapingwhenyou'rerenderinga variablethat is trustedand
containsmarkup that should not beescaped.Supposethat administrativeusersareableto write articles
that contain HTML code. By default, Twig will escape the article body.

To render it normally, add theraw filter:

1 {{ article.body | raw }}

You can alsodisableoutput escapinginside a {% block %}areaor for an entire template.For more
information, seeOutput Escaping14 in the Twig documentation.

Output Escaping in PHP

Output escapingis not automatic when using PHP templates.This meansthat unlessyou explicitly
chooseto escapeavariable,you'renot protected.To useoutput escaping,usethespecialescape() view
method:

1 Hello <?php echo $view->escape($name) ?>

By default, the escape() methodassumesthat the variableis beingrenderedwithin an HTML context
(andthus thevariableisescapedto besafefor HTML). Thesecondargumentletsyou changethecontext.
For example, to output something in a JavaScript string, use thejs context:

1 var myMsg = 'Hello <?php echo $view->escape($name, 'js') ?>';

Debugging
When using PHP, you can use the dump() function from the VarDumper component if you need to
quickly find the value of a variable passed. This is useful, for example, inside your controller:

1
2
3
4
5
6
7
8
9

10
11
12

// src/AppBundle/Controller/ArticleController.php
namespaceAppBundle\Controller ;

// ...

class ArticleController extends Controller
{

public function recentListAction ()
{

$articles = ... ;
dump($articles);

14. http://twig.sensiolabs.org/doc/api.html#escaper-extension

PDF brought to you by

generated on July 28, 2016

Chapter 7: Creating and Using Templates | 84

http://sensiolabs.com

Listing 7-45

Listing 7-46

Listing 7-47

13
14
15

// ...
}

}

The output of thedump()function is then rendered in the web developer toolbar.

The same mechanism can be used in Twig templates thanks todumpfunction:

1
2
3
4
5
6
7
8

{# app/Resources/views/article/recent_list.html.twig #}
{{ dump(articles) }}

{% for article in articles %}

{{ article.title }}

{% endfor %}

The variableswill only be dumped if Twig's debugsetting (in config.yml) is true . By default this
means that the variables will be dumped in thedevenvironment but not theprod environment.

Syntax Checking
You can check for syntax errors in Twig templates using thelint:twig console command:

1
2
3
4
5

You can check by filename:
$ php bin/console lint:twig app/Resources/views/article/recent_list.html.twig

or by directory:
$ php bin/console lint:twig app/Resources/views

Template Formats
Templatesareagenericwayto rendercontentin anyformat. And while in mostcasesyou'll usetemplates
to renderHTML content,a templatecanjust aseasilygenerateJavaScript,CSS,XML or anyother format
you can dream of.

For example,the same"resource"is often renderedin severalformats.To renderan article index pagein
XML, simply include the format in the template name:

¥ XML template name: article/index.xml.twig

¥ XML template filename: index.xml.twig

In reality, this is nothing more than a naming convention and the template isn't actually rendered
differently based on its format.

In many cases,you may want to allow a singlecontroller to rendermultiple different formats basedon
the "request format". For that reason, a common pattern is to do the following:

1
2
3
4
5
6

public function indexAction (Request $request)
{

$format = $request->getRequestFormat();

return $this ->render('article/index.' . $format . '.twig');
}

PDF brought to you by

generated on July 28, 2016

Chapter 7: Creating and Using Templates | 85

http://sensiolabs.com

Listing 7-48

Listing 7-49

The getRequestFormaton the Requestobject defaults to html , but can return any other format
basedon the format requestedby the user.The requestformat is most often managedby the routing,
where a route can be configured so that /contact sets the request format to html while
/contact.xml setsthe format to xml. For moreinformation, seetheAdvancedExamplein theRouting
chapter.

To create links that include the format parameter, include a_format key in the parameter hash:

1
2
3

PDF Version

Final Thoughts
The templating enginein Symfonyis a powerful tool that can be usedeachtime you needto generate
presentationalcontent in HTML, XML or any other format. And though templatesarea common way
to generatecontent in a controller, their use is not mandatory. The Responseobject returned by a
controller can be created with or without the use of a template:

1
2
3
4
5

// creates a Response object whose content is the rendered template
$response = $this ->render('article/index.html.twig');

// creates a Response object whose content is simple text
$response = new Response('response content');

Symfony'stemplatingengineis veryflexible andtwo different templaterenderersareavailableby default:
the traditional PHP templatesand the sleekand powerful Twig templates.Both support a template
hierarchyandcomepackagedwith arich setof helperfunctionscapableof performingthemostcommon
tasks.

Overall, the topic of templatingshould be thought of asa powerful tool that'sat your disposal.In some
cases, you may not need to render a template, and in Symfony, that's absolutely fine.

Learn more from the Cookbook
¥ How to Use PHP instead of Twig for Templates
¥ How to Customize Error Pages
¥ How to Write a custom Twig Extension

PDF brought to you by

generated on July 28, 2016

Chapter 7: Creating and Using Templates | 86

http://sensiolabs.com

Listing 8-1

Chapter 8

Configuring Symfony (and Environments)

An application consistsof a collection of bundlesrepresentingall the featuresand capabilitiesof your
application. Each bundle can be customizedvia configuration files written in YAML, XML or PHP.
By default, the main configuration file lives in the app/config/ directory and is called either
config.yml , config.xml or config.php depending on which format you prefer:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

app/config/config.yml
imports :

- { resource: parameters.yml }
- { resource: security.yml }

framework:
secret : '%secret%'
router : { resource: '%kernel.root_dir%/config/routing.yml' }
...

Twig Configuration
twig :

debug: '%kernel.debug%'
strict_variables : '%kernel.debug%'

...

You'll learn exactly how to load each file/format in the next sectionEnvironments.

Each top-level entry like framework or twig definesthe configuration for a particular bundle. For
example,the framework key definesthe configuration for the core SymfonyFrameworkBundleand
includes configuration for the routing, templating, and other core systems.

For now, don't worry about the specificconfiguration options in eachsection.The configuration file
shipswith sensibledefaults.As you readmore and exploreeachpart of Symfony,you'll learnabout the
specific configuration options of each feature.

PDF brought to you by

generated on July 28, 2016

Chapter 8: Configuring Symfony (and Environments) | 87

http://sensiolabs.com

Listing 8-2

Listing 8-3

Listing 8-4

Listing 8-5

Listing 8-6

Configuration Formats

Throughout the chapters,all configuration exampleswill be shown in all three formats (YAML,
XML andPHP).Eachhasits own advantagesanddisadvantages.The choiceof which to useis up to
you:

¥ YAML: Simple, clean and readable (learn more about YAML in "The YAML Format");
¥ XML: More powerful than YAML at times and supports IDE autocompletion;
¥ PHP: Very powerful but less readable than standard configuration formats.

Default Configuration Dump
You candump the default configuration for a bundle in YAML to the consoleusingthe config:dump-
reference command. Here is an example of dumping the default FrameworkBundle configuration:

1 $ php bin/console config:dump-reference FrameworkBundle

The extension alias (configuration key) can also be used:

1 $ php bin/console config:dump-reference framework

Seethe cookbook article: How to Load ServiceConfiguration insidea Bundlefor information on
adding configuration for your own bundle.

Environments

An application can run in variousenvironments.The different environmentssharethe samePHPcode
(apart from the front controller), but usedifferent configuration. For instance,a dev environmentwill
log warningsand errors,while a prod environmentwill only log errors.Somefiles are rebuilt on each
requestin the devenvironment(for the developer'sconvenience),but cachedin the prod environment.
All environments live together on the same machine and execute the same application.

A Symfonyproject generallybeginswith three environments(dev, test and prod), though creating
new environmentsis easy.You canview your application in different environmentssimply by changing
the front controller in your browser. To see the application in the dev environment, accessthe
application via the development front controller:

1 http://localhost/app_dev.php/random/10

If you'd like to seehow your application will behavein the production environment,call the prod front
controller instead:

1 http://localhost/app.php/random/10

Sincethe prod environmentis optimized for speed;the configuration, routing and Twig templatesare
compiledinto flat PHPclassesandcached.When viewingchangesin the prod environment,you'll need
to clear these cached files and allow them to rebuild:

1 $ php bin/console cache:clear --env =prod --no-debug

PDF brought to you by

generated on July 28, 2016

Chapter 8: Configuring Symfony (and Environments) | 88

http://sensiolabs.com

Listing 8-7

Listing 8-8

Listing 8-9

If you open the web/app.php file, you'll find that it's configured explicitly to use the prod
environment:

$kernel = new AppKernel('prod' , false);

You cancreatea newfront controller for a newenvironmentby copyingthis file andchangingprod
to some other value.

The test environment is used when running automated tests and cannot be accesseddirectly
through the browser. See thetesting chapterfor more details.

When usingtheserver:run commandto startaserver,http://localhost:8000/ will usethe
dev front controller of your application.

Environment Configuration
The AppKernelclass is responsible for actually loading the configuration file of your choice:

1
2
3
4
5
6
7

// app/AppKernel.php
public function registerContainerConfiguration (LoaderInterface $loader)
{

$loader ->load(
__DIR__. '/config/config_' . $this ->getEnvironment() . '.yml'

);
}

You alreadyknow that the .yml extensioncanbe changedto .xml or .php if you prefer to useeither
XML or PHPto write your configuration.Notice alsothat eachenvironmentloadsits own configuration
file. Consider the configuration file for thedevenvironment.

1
2
3
4
5
6
7
8
9

app/config/config_dev.yml
imports :

- { resource: config.yml }

framework:
router : { resource: '%kernel.root_dir%/config/routing_dev.yml' }
profiler : { only_exceptions : false }

...

The imports keyis similar to aPHPinclude statementandguaranteesthat themain configurationfile
(config.yml) is loadedfirst. The restof the file tweaksthe default configuration for increasedlogging
and other settings conducive to a development environment.

Both the prod and test environmentsfollow the samemodel: eachenvironment imports the base
configuration file and then modifiesits configuration valuesto fit the needsof the specificenvironment.
This is just a convention,but onethat allowsyou to reusemostof your configurationandcustomizejust
pieces of it between environments.

PDF brought to you by

generated on July 28, 2016

Chapter 8: Configuring Symfony (and Environments) | 89

http://sensiolabs.com

Listing 9-1

Chapter 9

The Bundle System

A bundle is similar to a plugin in other software,but evenbetter. The key differenceis that everything
is a bundle in Symfony,including both the core framework functionality and the codewritten for your
application. Bundlesare first-classcitizens in Symfony.This givesyou the flexibility to use pre-built
featurespackagedin third-party bundlesor to distribute your own bundles.It makesit easyto pick and
choose which features to enable in your application and to optimize them the way you want.

While you'll learn the basicshere,an entire cookbook entry is devotedto the organizationand best
practices ofbundles.

A bundle is simply a structuredsetof files within a directory that implementa singlefeature.You might
createa BlogBundle,a ForumBundleor a bundle for usermanagement(many of theseexist alreadyas
open sourcebundles).Eachdirectory contains everythingrelated to that feature, including PHP files,
templates,stylesheets,JavaScriptfiles, testsandanythingelse.Everyaspectof a featureexistsin abundle
and every feature lives in a bundle.

Bundlesusedin your applicationsmust be enabledby registeringthem in the registerBundles()
method of theAppKernelclass:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// app/AppKernel.php
public function registerBundles ()
{

$bundles = array (
new Symfony\Bundle\FrameworkBundle\FrameworkBundle(),
new Symfony\Bundle\SecurityBundle\SecurityBundle (),
new Symfony\Bundle\TwigBundle\TwigBundle(),
new Symfony\Bundle\MonologBundle\MonologBundle(),
new Symfony\Bundle\SwiftmailerBundle\SwiftmailerBundle (),
new Symfony\Bundle\DoctrineBundle\DoctrineBundle (),
new Sensio\Bundle\FrameworkExtraBundle\SensioFrameworkExtraBundle(),
new AppBundle\AppBundle(),

);

if (in_array ($this ->getEnvironment(), array ('dev' , 'test'))) {
$bundles[] = new Symfony\Bundle\WebProfilerBundle\WebProfilerBundle ();
$bundles[] = new Sensio\Bundle\DistributionBundle\SensioDistributionBundle ();
$bundles[] = new Sensio\Bundle\GeneratorBundle\SensioGeneratorBundle ();

}

PDF brought to you by

generated on July 28, 2016

Chapter 9: The Bundle System | 90

http://sensiolabs.com

Listing 9-2

Listing 9-3

20
21
22

return $bundles;
}

With the registerBundles() method, you havetotal control over which bundlesareusedby your
application (including the core Symfony bundles).

A bundle can live anywhereaslong asit canbe autoloaded(via the autoloaderconfiguredat app/
autoload.php).

Creating a Bundle
The SymfonyStandardEdition comeswith a handy task that createsa fully-functional bundle for you.
Of course, creating a bundle by hand is pretty easy as well.

To show you how simple the bundle systemis, createa new bundle calledAcmeTestBundleand enable
it.

The Acmeportion is just a dummy name that should be replacedby some"vendor" name that
represents you or your organization (e.g. ABCTestBundle for some company namedABC).

Start by creating a src/ Acme/TestBundle/ directory and adding a new file called
AcmeTestBundle.php:

1
2
3
4
5
6
7
8

// src/Acme/TestBundle/AcmeTestBundle.php
namespaceAcme\TestBundle;

use Symfony\Component\HttpKernel\Bundle\Bundle;

class AcmeTestBundleextends Bundle
{
}

The name AcmeTestBundlefollows the standard Bundle naming conventions. You could also
chooseto shorten the nameof the bundle to simply TestBundleby naming this classTestBundle
(and naming the fileTestBundle.php).

This empty classis the only pieceyou needto createthe new bundle. Though commonly empty, this
class is powerful and can be used to customize the behavior of the bundle.

Now that you've created the bundle, enable it via theAppKernelclass:

1
2
3
4
5
6
7
8
9

10
11
12
13

// app/AppKernel.php
public function registerBundles ()
{

$bundles = array (
// ...

// register your bundle
new Acme\TestBundle\AcmeTestBundle(),

);
// ...

return $bundles;
}

PDF brought to you by

generated on July 28, 2016

Chapter 9: The Bundle System | 91

http://sensiolabs.com

Listing 9-4

And while it doesn't do anything yet, AcmeTestBundle is now ready to be used.

And as easyas this is, Symfonyalso providesa command-lineinterfacefor generatinga basicbundle
skeleton:

1 $ php bin/console generate:bundle --namespace =Acme/TestBundle

The bundle skeletongeneratesa basiccontroller, templateand routing resourcethat canbecustomized.
You'll learn more about Symfony's command-line tools later.

Whenevercreatinga new bundle or using a third-party bundle, alwaysmake sure the bundle has
beenenabledin registerBundles() . When using the generate:bundle command, this is
done for you.

Bundle Directory Structure
The directory structure of a bundle is simple and flexible. By default, the bundle systemfollows a
set of conventions that help to keep code consistentbetweenall Symfony bundles. Take a look at
AcmeDemoBundle, as it contains some of the most common elements of a bundle:
Controller/Controller/

Contains the controllers of the bundle (e.g.RandomController.php).

DependencyInjection/DependencyInjection/

Holds certain DependencyInjection Extensionclasses,which may import serviceconfiguration,
register compiler passes or more (this directory is not necessary).

Resources/config/Resources/config/

Houses configuration, including routing configuration (e.g.routing.yml).

Resources/views/Resources/views/

Holds templates organized by controller name (e.g.Hello/index.html.twig).

Resources/public/Resources/public/

Containsweb assets(images,stylesheets,etc) and is copiedor symbolicallylinked into the project
web/ directory via theassets:install console command.

Tests/Tests/

Holds all tests for the bundle.

A bundle can be assmall or largeasthe featureit implements.It containsonly the files you needand
nothing else.

As you move through the book, you'll learn how to persistobjects to a database,createand validate
forms, createtranslationsfor your application, write testsand much more. Eachof thesehastheir own
place and role within the bundle.

third-party bundles: http://knpbundles.com

PDF brought to you by

generated on July 28, 2016

Chapter 9: The Bundle System | 92

http://knpbundles.com
http://sensiolabs.com

Listing 10-1

Chapter 10

Databases and Doctrine

One of the most common and challengingtasks for any application involves persistingand reading
information to and from a database.Although the Symfonyfull-stack Frameworkdoesn'tintegrateany
ORM by default, the Symfony StandardEdition, which is the most widely used distribution, comes
integratedwith Doctrine1, a library whosesolegoalis to giveyou powerful tools to makethis easy.In this
chapter,you'll learnthe basicphilosophybehindDoctrine andseehow easyworking with adatabasecan
be.

Doctrine is totally decoupled from Symfony and using it is optional. This chapter is all about
the Doctrine ORM, which aims to let you map objectsto a relational database(such as MySQL,
PostgreSQLor MicrosoftSQL). If you preferto useraw databasequeries,this is easy,and explained
in the "How to Use Doctrine DBAL" cookbook entry.

You canalsopersistdatato MongoDB2 usingDoctrine ODM library. For moreinformation, readthe
"DoctrineMongoDBBundle3" documentation.

A Simple Example: A Product
The easiestway to understandhow Doctrine works is to seeit in action. In this section,you'll configure
your database, create aProduct object, persist it to the database and fetch it back out.

Configuring the Database

Beforeyou really begin,you'll needto configureyour databaseconnectioninformation. By convention,
this information is usually configured in anapp/config/parameters.yml file:

1
2
3
4

app/config/parameters.yml
parameters:

database_host: localhost
database_name: test_project

1. http://www.doctrine-project.org/

2. https://www.mongodb.org/

3. https://symfony.com/doc/current/bundles/DoctrineMongoDBBundle/index.html

PDF brought to you by

generated on July 28, 2016

Chapter 10: Databases and Doctrine | 93

http://sensiolabs.com

Listing 10-2

Listing 10-3

Listing 10-4

Listing 10-5

Listing 10-6

5
6
7
8

database_user: root
database_password: password

...

Defining the configuration via parameters.yml is just a convention.The parametersdefined in
that file are referenced by the main configuration file when setting up Doctrine:

1
2
3
4
5
6
7
8

app/config/config.yml
doctrine :

dbal :
driver : pdo_mysql
host : '%database_host%'
dbname: '%database_name%'
user: '%database_user%'
password: '%database_password%'

By separatingthe databaseinformation into a separatefile, you caneasilykeepdifferent versionsof
the file on eachserver.You canalsoeasilystoredatabaseconfiguration(or anysensitiveinformation)
outsideof your project, like insideyour Apacheconfiguration, for example.For more information,
seeHow to Set external Parameters in the Service Container.

Now that Doctrine canconnectto your database,the following commandcanautomaticallygeneratean
empty test_project database for you:

1 $ php bin/console doctrine:database:create

Setting up the Database to be UTF8

One mistakeevenseasoneddevelopersmake when starting a Symfonyproject is forgetting to set
up default charsetand collation on their database,ending up with latin type collations, which are
default for mostdatabases.Theymight evenrememberto do it the veryfirst time, but forget that it's
all gone after running a relatively common command during development:

1
2

$ php bin/console doctrine:database:drop --force
$ php bin/console doctrine:database:create

Setting UTF8 defaults for MySQL is as simple as adding a few lines to your configuration file
(typically my.cnf):

1
2
3
4

[mysqld]
Version 5.5.3 introduced "utf8mb4", which is recommended
collation-server = utf8mb4_general_ci # Replaces utf8_general_ci
character-set-server = utf8mb4 # Replaces utf8

You canalsochangethe defaultsfor Doctrine so that the generatedSQL usesthe correctcharacter
set.

1
2
3
4
5
6
7

app/config/config.yml
doctrine :

dbal :
charset : utf8mb4
default_table_options :

charset : utf8mb4
collate : utf8mb4_unicode_ci

We recommendagainstMySQL's utf8 characterset, since it does not support 4-byte unicode
characters,and strings containing them will be truncated. This is fixed by the newer utf8mb4
character set4.

PDF brought to you by

generated on July 28, 2016

Chapter 10: Databases and Doctrine | 94

http://sensiolabs.com

Listing 10-7

Listing 10-8

Listing 10-9

If you want to useSQLiteasyour database,you needto setthe path whereyour databasefile should
be stored:

1
2
3
4
5
6

app/config/config.yml
doctrine :

dbal :
driver : pdo_sqlite
path: '%kernel.root_dir%/sqlite.db'
charset : UTF8

Creating an Entity Class

Supposeyou're building an application where products need to be displayed.Without eventhinking
about Doctrine or databases,you alreadyknow that you need a Product object to representthose
products. Create this class inside theEntity directory of your AppBundle:

1
2
3
4
5
6
7
8
9

// src/AppBundle/Entity/Product.php
namespaceAppBundle\Entity ;

class Product
{

private $name;
private $price ;
private $description ;

}

The class- often calledan "entity", meaninga basicclassthat holdsdata - is simpleand helpsfulfill the
businessrequirementof needingproducts in your application.This classcan'tbepersistedto a database
yet - it's just a simple PHP class.

Onceyou learnthe conceptsbehindDoctrine, you canhaveDoctrine createsimpleentity classesfor
you. This will ask you interactive questions to help you build any entity:

1 $ php bin/console doctrine:generate:entity

Add Mapping Information

Doctrine allows you to work with databasesin a much more interestingway than just fetching rows of
scalardata into an array. Instead,Doctrine allows you to fetch entire objectsout of the database,and to
persistentire objectsto the database.For Doctrine to be able to do this, you must map your database
tablesto specificPHPclasses,and the columnson thosetablesmust bemappedto specificpropertieson
their corresponding PHP classes.

4. https://dev.mysql.com/doc/refman/5.5/en/charset-unicode-utf8mb4.html

PDF brought to you by

generated on July 28, 2016

Chapter 10: Databases and Doctrine | 95

http://sensiolabs.com

Listing 10-10

You'll providethis mappinginformation in the form of "metadata",acollectionof rulesthat tellsDoctrine
exactlyhow the Product classand its propertiesshould be mappedto a specificdatabasetable. This
metadatacanbespecifiedin a numberof different formats, including YAML, XML or directly insidethe
Product class via DocBlock annotations:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

// src/AppBundle/Entity/Product.php
namespaceAppBundle\Entity ;

use Doctrine\ORM\Mappingas ORM;

/**
* @ORM\Entity
* @ORM\Table(name="product")
*/

class Product
{

/**
* @ORM\Column(type="integer")
* @ORM\Id
* @ORM\GeneratedValue(strategy="AUTO")
*/

private $id ;

/**
* @ORM\Column(type="string", length=100)
*/

private $name;

/**
* @ORM\Column(type="decimal", scale=2)
*/

private $price ;

/**
* @ORM\Column(type="text")
*/

private $description ;
}

A bundle can acceptonly one metadatadefinition format. For example, it's not possibleto mix
YAML metadata definitions with annotated PHP entity class definitions.

The table nameis optional and if omitted, will be determinedautomaticallybasedon the nameof
the entity class.

Doctrine allows you to choosefrom a wide varietyof different field types,eachwith their own options.
For information on the available field types, see theDoctrine Field Types Referencesection.

Youcanalsocheckout Doctrine'sBasicMappingDocumentation5 for all detailsaboutmappinginformation.
If you useannotations,you'll needto prependall annotationswith ORM\(e.g.ORM\Column(...)), which is not
shownin Doctrine'sdocumentation.You'll alsoneedto includethe use Doctrine\ORM\Mappingas ORM;statement,
whichimportstheORMannotations prefix.

5. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html

PDF brought to you by

generated on July 28, 2016

Chapter 10: Databases and Doctrine | 96

http://sensiolabs.com

Listing 10-11

Listing 10-12

Becareful if the namesof your entity classes(or their properties)are also reservedSQL keywords
like GROUPor USER. For example, if your entity's classname is Group, then, by default, the
correspondingtablenamewould begroup. This will causean SQLerror in somedatabaseengines.
SeeDoctrine'sReservedSQL keywordsdocumentation6 for detailson how to properly escapethese
names.Alternatively, if you're freeto chooseyour databaseschema,simply map to a different table
name or column name. SeeDoctrine's CreatingClassesfor the Database7 and PropertyMapping8

documentation.

When using another library or program (e.g. Doxygen) that usesannotations, you should place
the @IgnoreAnnotationannotation on the classto indicate which annotationsSymfonyshould
ignore.

For example, to prevent the@fnannotation from throwing an exception, add the following:

1
2
3
4
5

/**
* @IgnoreAnnotation("fn")
*/

class Product
// ...

Generating Getters and Setters

Eventhough Doctrine now knows how to persista Product object to the database,the classitself isn't
reallyusefulyet. SinceProduct is just a regularPHPclasswith private properties,you needto create
public getterandsettermethods(e.g.getName(), setName($name)) in order to accessits properties
in the restof your application'scode.Fortunately,the following commandcangeneratetheseboilerplate
methods automatically:

1 $ php bin/console doctrine:generate:entities AppBundle/Entity/Product

This commandmakessurethat all the gettersand settersaregeneratedfor the Product class.This is a
safecommand- you canrun it overand overagain:it only generatesgettersand settersthat don't exist
(i.e. it doesn't replace your existing methods).

Keepin mind that Doctrine'sentity generatorproducessimplegetters/setters.You shouldreviewthe
generated methods and add any logic, if necessary, to suit the needs of your application.

6. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#quoting-reserved-words

7. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#creating-classes-for-the-database

8. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#property-mapping

PDF brought to you by

generated on July 28, 2016

Chapter 10: Databases and Doctrine | 97

http://sensiolabs.com

Listing 10-13

Listing 10-14

More aboutdoctrine:generate:entities

With the doctrine:generate:entities command you can:

¥ generate getter and setter methods in entity classes;
¥ generate repository classes on behalf of entities configured with the

@ORM\Entity(repositoryClass="...") annotation;
¥ generate the appropriate constructor for 1:n and n:m relations.

The doctrine:generate:entities command savesa backup of the original Product.php
namedProduct.php~. In somecases,the presenceof this file cancausea "Cannot redeclareclass"
error. It can be safelyremoved.You can alsousethe --no-backup option to preventgenerating
these backup files.

Note that you don't needto usethis command.You could alsowrite the necessarygettersandsetters
by hand.This option simply existsto saveyou time, sincecreatingthesemethodsis often acommon
task during development.

You can also generateall known entities (i.e. any PHP classwith Doctrine mapping information) of a
bundle or an entire namespace:

1
2
3
4
5

generates all entities in the AppBundle
$ php bin/console doctrine:generate:entities AppBundle

generates all entities of bundles in the Acme namespace
$ php bin/console doctrine:generate:entities Acme

Creating the Database Tables/Schema

You now have a usable Product classwith mapping information so that Doctrine knows exactly
how to persist it. Of course,you don't yet have the correspondingproduct table in your database.
Fortunately,Doctrine canautomaticallycreateall the databasetablesneededfor everyknown entity in
your application. To do this, run:

1 $ php bin/console doctrine:schema:update --force

Actually, this command is incredibly powerful. It compareswhat your databaseshouldlook like
(basedon themappinginformation of your entities)with how it actuallylooks,andexecutestheSQL
statementsneededto updatethe databaseschemato whereit should be. In other words, if you add
a new property with mappingmetadatato Product and run this task, it will executethe "ALTER
TABLE" statement needed to add that new column to the existingproduct table.

An evenbetter way to take advantageof this functionality is via migrations9, which allow you to
generatetheseSQL statementsand store them in migration classesthat can be run systematically
on your production serverin order to updateand track changesto your databaseschemasafelyand
reliably.

Whether or not you take advantageof migrations, the doctrine:schema:update command
should only be used during development. It should not be used in a production environment.

Your databasenow hasa fully-functional product table with columnsthat match the metadatayou've
specified.

9. https://symfony.com/doc/current/bundles/DoctrineMigrationsBundle/index.html

PDF brought to you by

generated on July 28, 2016

Chapter 10: Databases and Doctrine | 98

http://sensiolabs.com

Listing 10-15

Persisting Objects to the Database

Now that you havemappedthe Product entity to its correspondingproduct table, you're ready to
persistProduct objectsto the database.From insidea controller, this is pretty easy.Add the following
method to theDefaultController of the bundle:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

// src/AppBundle/Controller/DefaultController.php

// ...
use AppBundle\Entity\Product ;
use Symfony\Component\HttpFoundation\Response;

// ...
public function createAction ()
{

$product = new Product();
$product->setName('Keyboard');
$product->setPrice (19.99);
$product->setDescription ('Ergonomic and stylish!');

$em= $this ->getDoctrine () ->getManager();

// tells Doctrine you want to (eventually) save the Product (no queries yet)
$em->persist ($product);

// actually executes the queries (i.e. the INSERT query)
$em->flush ();

return new Response('Saved new product with id ' . $product->getId ());
}

If you'refollowing alongwith this example,you'll needto createa route that points to this action to
see it work.

This article showsworking with Doctrine from within a controller by usingthe getDoctrine() 10

methodof the controller. This methodis ashortcut to getthedoctrine service.You canwork with
Doctrine anywhereelseby injecting that servicein the service.SeeServiceContainerfor more on
creating your own services.

Take a look at the previous example in more detail:

¥ lines 10-13 In this section,you instantiateand work with the $product object like anyother normal
PHP object.

¥ line 15 This line fetchesDoctrine'sentity managerobject, which is responsiblefor the processof
persisting objects to, and fetching objects from, the database.

¥ line 17 The persist($product) call tells Doctrine to "manage"the $product object.This doesnot cause
a query to be made to the database.

¥ line 18 When the flush() method is called, Doctrine looks through all of the objects that it's
managingto seeif they needto be persistedto the database.In this example,the $product object's
data doesn'texist in the database,so the entity managerexecutesan INSERTquery, creatinga new
row in the product table.

10. http://api.symfony.com/master/Symfony/Bundle/FrameworkBundle/Controller/Controller.html#method_getDoctrine

PDF brought to you by

generated on July 28, 2016

Chapter 10: Databases and Doctrine | 99

http://sensiolabs.com

Listing 10-16

Listing 10-17

Listing 10-18

In fact, sinceDoctrine is awareof all your managedentities,when you call the flush() method,
it calculatesan overall changesetand executesthe queriesin the correct order. It utilizes cached
preparedstatementto slightly improve the performance.For example,if you persista total of 100
Product objectsand then subsequentlycall flush() , Doctrine will execute100 INSERTqueries
using a single prepared statement object.

Whether creatingor updating objects,the workflow is alwaysthe same.In the next section,you'll see
how Doctrine is smartenoughto automaticallyissuean UPDATEquery if the entity alreadyexistsin the
database.

Doctrine providesa library that allows you to programmaticallyload testingdata into your project
(i.e. "fixture data"). For information, see the "DoctrineFixturesBundle11" documentation.

Fetching Objects from the Database

Fetchingan object back out of the databaseis eveneasier.For example,supposeyou'veconfigureda
route to display a specificProduct based on itsid value:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

public function showAction($productId)
{

$product = $this ->getDoctrine ()
->getRepository ('AppBundle:Product')
->find ($productId);

if (! $product) {
throw $this ->createNotFoundException(

'No product found for id ' . $productId
);

}

// ... do something, like pass the $product object into a template
}

You can achievethe equivalentof this without writing any codeby using the @ParamConverter
shortcut. See theFrameworkExtraBundle documentation12 for more details.

When you queryfor aparticular typeof object,you alwaysusewhat'sknown asits "repository".You can
think of a repositoryasa PHPclasswhoseonly job is to help you fetchentitiesof a certainclass.You can
access the repository object for an entity class via:

$repository = $this ->getDoctrine ()
->getRepository ('AppBundle:Product');

The AppBundle:Productstring is a shortcut you canuseanywherein Doctrine insteadof the full
classnameof theentity (i.e.AppBundle\Entity\Product). Aslong asyour entity livesunderthe
Entity namespace of your bundle, this will work.

Once you have a repository object, you can access all sorts of helpful methods:

1
2

// query for a single product by its primary key (usually "id")
$product = $repository ->find ($productId);

11. https://symfony.com/doc/current/bundles/DoctrineFixturesBundle/index.html

12. https://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/annotations/converters.html

PDF brought to you by

generated on July 28, 2016

Chapter 10: Databases and Doctrine | 100

http://sensiolabs.com

Listing 10-19

3
4
5
6
7
8
9

10
11
12

// dynamic method names to find a single product based on a column value
$product = $repository ->findOneById($productId);
$product = $repository ->findOneByName('Keyboard');

// dynamic method names to find a group of products based on a column value
$products = $repository ->findByPrice (19.99);

// find *all* products
$products = $repository ->findAll ();

Of course,you can also issuecomplex queries,which you'll learn more about in the Querying for
Objectssection.

You canalsotakeadvantageof the usefulfindBy and findOneBymethodsto easilyfetchobjectsbased
on multiple conditions:

1
2
3
4
5
6
7
8
9

10

// query for a single product matching the given name and price
$product = $repository ->findOneBy(

array ('name' => 'Keyboard' , 'price' => 19.99)
);

// query for multiple products matching the given name, ordered by price
$products = $repository ->findBy (

array ('name' => 'Keyboard'),
array ('price' => 'ASC')

);

When you renderanypage,you canseehow manyqueriesweremadein the bottom right cornerof
the web debug toolbar.

If you click the icon, the profiler will open, showing you the exact queries that were made.

The icon will turn yellow if thereweremore than 50 querieson the page.This could indicate that
something is not correct.

Updating an Object

Onceyou'vefetchedan object from Doctrine, updating it is easy.Supposeyou havea route that mapsa
product id to an update action in a controller:

PDF brought to you by

generated on July 28, 2016

Chapter 10: Databases and Doctrine | 101

http://sensiolabs.com

Listing 10-20

Listing 10-21

Listing 10-22

Listing 10-23

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

public function updateAction ($productId)
{

$em= $this ->getDoctrine () ->getManager();
$product = $em->getRepository ('AppBundle:Product') ->find ($productId);

if (! $product) {
throw $this ->createNotFoundException(

'No product found for id ' . $productId
);

}

$product->setName('New product name!');
$em->flush ();

return $this ->redirectToRoute ('homepage');
}

Updating an object involves just three steps:
1. fetching the object from Doctrine;
2. modifying the object;
3. calling flush() on the entity manager

Notice that calling $em->persist($product) isn't necessary.Recall that this method simply tells
Doctrine to manageor "watch" the $product object. In this case,sinceyou fetched the $product
object from Doctrine, it's already managed.

Deleting an Object

Deleting an object is very similar, but requires a call to theremove() method of the entity manager:

$em->remove($product);
$em->flush ();

As you might expect, the remove() method notifies Doctrine that you'd like to remove the given
object from the database.The actualDELETEquery,however,isn't actuallyexecuteduntil the flush()
method is called.

Querying for Objects
You've already seen how the repository object allows you to run basic queries without any work:

$product = $repository ->find ($productId);
$product = $repository ->findOneByName('Keyboard');

Of course,Doctrine alsoallows you to write more complexqueriesusingthe Doctrine Query Language
(DQL). DQL is similar to SQL except that you should imagine that you're querying for one or more
objects of an entity class (e.g.Product) instead of querying for rows on a table (e.g.product).

When queryingin Doctrine, you havetwo main options: writing pure DQL queriesor usingDoctrine's
Query Builder.

Querying for Objects with DQL

Imagine that you want to query for products that cost more than 19.99, ordered from least to most
expensive.You canuseDQL, Doctrine'snativeSQL-likelanguage,to constructa queryfor this scenario:

1
2
3

$em= $this ->getDoctrine () ->getManager();
$query = $em->createQuery(

'SELECT p

PDF brought to you by

generated on July 28, 2016

Chapter 10: Databases and Doctrine | 102

http://sensiolabs.com

Listing 10-24

Listing 10-25

4
5
6
7
8
9

FROM AppBundle:Product p
WHERE p.price > :price
ORDER BY p.price ASC'

) ->setParameter('price' , 19.99);

$products = $query->getResult ();

If you're comfortablewith SQL, then DQL should feel very natural. The biggestdifferenceis that you
needto think in termsof selectingPHPobjects,insteadof rows in a database.For this reason,you select
from the AppBundle:Product entity (an optional shortcut for the AppBundle\Entity\Product
class) and then alias it asp.

Takenote of the setParameter() method. When working with Doctrine, it's alwaysa good idea
to set any external valuesas "placeholders"(:price in the exampleabove)as it preventsSQL
injection attacks.

The getResult() method returns an array of results. To get only one result, you can use
getOneOrNullResult() :

$product = $query->setMaxResults(1) ->getOneOrNullResult();

TheDQL syntaxis incrediblypowerful, allowing you to easilyjoin betweenentities(the topic of relations
will be coveredlater), group, etc. For more information, seethe official Doctrine Query Language13

documentation.

Querying for Objects Using Doctrine's Query Builder

Insteadof writing a DQL string, you can usea helpful object called the QueryBuilder to build that
string for you. This is usefulwhen the actualquery dependson dynamicconditions, asyour codesoon
becomes hard to read with DQL as you start to concatenate strings:

1
2
3
4
5
6
7
8
9

10
11
12
13
14

$repository = $this ->getDoctrine ()
->getRepository ('AppBundle:Product');

// createQueryBuilder automatically selects FROM AppBundle:Product
// and aliases it to "p"
$query = $repository ->createQueryBuilder ('p')

->where('p.price > :price')
->setParameter('price' , '19.99')
->orderBy('p.price' , 'ASC')
->getQuery();

$products = $query->getResult ();
// to get just one result:
// $product = $query->setMaxResults(1)->getOneOrNullResult();

The QueryBuilder object contains every method necessaryto build your query. By calling the
getQuery() method, the query builder returns a normal Queryobject, which can be usedto get the
result of the query.

For more information on Doctrine's Query Builder, consult Doctrine'sQuery Builder14 documentation.

13. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/dql-doctrine-query-language.html

14. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/query-builder.html

PDF brought to you by

generated on July 28, 2016

Chapter 10: Databases and Doctrine | 103

http://sensiolabs.com

Listing 10-26

Listing 10-27

Listing 10-28

Listing 10-29

Custom Repository Classes

In the previous sections, you began constructing and using more complex queries from inside a
controller. In order to isolate, reuseand test thesequeries, it's a good practice to createa custom
repository class for your entity. Methods containing your query logic can then be stored in this class.

To do this, add the repository class name to your entity's mapping definition:

1
2
3
4
5
6
7
8
9

10
11
12

// src/AppBundle/Entity/Product.php
namespaceAppBundle\Entity ;

use Doctrine\ORM\Mappingas ORM;

/**
* @ORM\Entity(repositoryClass="AppBundle\Entity\ProductRepository")
*/

class Product
{

//...
}

Doctrine can generateempty repository classesfor all the entities in your application via the same
command used earlier to generate the missing getter and setter methods:

1 $ php bin/console doctrine:generate:entities AppBundle

If you opt to create the repository classes yourself, they must extend
Doctrine\ORM\EntityRepository .

Next, add a new method - findAllOrderedByName() - to the newly-generated
ProductRepository class.This methodwill queryfor all theProduct entities,orderedalphabetically
by name.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// src/AppBundle/Entity/ProductRepository.php
namespaceAppBundle\Entity ;

use Doctrine\ORM\EntityRepository ;

class ProductRepository extends EntityRepository
{

public function findAllOrderedByName()
{

return $this ->getEntityManager ()
->createQuery(

'SELECT p FROM AppBundle:Product p ORDER BY p.name ASC'
)
->getResult ();

}
}

The entity manager can be accessedvia $this->getEntityManager() from inside the
repository.

You can use this new method just like the default finder methods of the repository:

$em= $this ->getDoctrine () ->getManager();
$products = $em->getRepository ('AppBundle:Product')

->findAllOrderedByName();

PDF brought to you by

generated on July 28, 2016

Chapter 10: Databases and Doctrine | 104

http://sensiolabs.com

Listing 10-30

Listing 10-31

Listing 10-32

When using a custom repository class,you still haveaccessto the default finder methodssuchas
find() and findAll() .

Entity Relationships/Associations
Supposethat eachproduct in your applicationbelongsto exactlyonecategory.In this case,you'll needa
Category class, and a way to relate aProduct object to aCategory object.

Start by creatingthe Category entity. Sinceyou know that you'll eventuallyneedto persistcategory
objects through Doctrine, you can let Doctrine create the class for you.

1
2
3

$ php bin/console doctrine:generate:entity --no-interaction \
--entity ="AppBundle:Category" \
--fields ="name:string(255)"

This taskgeneratesthe Category entity for you, with an id field, anamefield and the associatedgetter
and setter functions.

Relationship Mapping Metadata

In this example, each categorycan be associatedwith many products, while each product can be
associatedwith only one category.This relationship can be summarizedas: many products to one
category (or equivalently,onecategory tomanyproducts).

From the perspectiveof the Product entity, this is a many-to-onerelationship.From the perspectiveof
the Category entity, this is aone-to-manyrelationship.This is important, becausethe relativenatureof
the relationshipdetermineswhich mappingmetadatato use.It alsodetermineswhich classmusthold a
reference to the other class.

To relate the Product and Category entities, simply createa category property on the Product
class, annotated as follows:

1
2
3
4
5
6
7
8
9

10
11
12
13

// src/AppBundle/Entity/Product.php

// ...
class Product
{

// ...

/**
* @ORM\ManyToOne(targetEntity="Category", inversedBy="products")
* @ORM\JoinColumn(name="category_id", referencedColumnName="id")
*/

private $category;
}

This many-to-onemappingis critical. It tellsDoctrine to usethecategory_id column on theproduct
table to relate each record in that table with a record in thecategory table.

Next, sincea singleCategory object will relateto many Product objects,a products property can
be added to theCategory class to hold those associated objects.

1
2
3
4
5

// src/AppBundle/Entity/Category.php

// ...
use Doctrine\Common\Collections\ArrayCollection ;

PDF brought to you by

generated on July 28, 2016

Chapter 10: Databases and Doctrine | 105

http://sensiolabs.com

Listing 10-33

6
7
8
9

10
11
12
13
14
15
16
17
18
19

class Category
{

// ...

/**
* @ORM\OneToMany(targetEntity="Product", mappedBy="category")
*/

private $products;

public function __construct ()
{

$this ->products = new ArrayCollection ();
}

}

While the many-to-onemapping shown earlierwasmandatory, this one-to-manymapping is optional.
It is included hereto help demonstrateDoctrine'srangeof relationshipmanagementcapabailties.Plus,
in the context of this application, it will likely beconvenientfor eachCategory object to automatically
own a collection of its relatedProduct objects.

The codein the constructoris important. Ratherthan beinginstantiatedasa traditional array , the
$products property must be of a type that implementsDoctrine'sCollection interface.In this
case,an ArrayCollection object is used.This object looks and actsalmostexactlylike an array,
but hassomeaddedflexibility. If this makesyou uncomfortable,don't worry. Justimaginethat it's
anarray and you'll be in good shape.

The targetEntityvaluein the metadatausedabovecanreferenceanyentity with a valid namespace,
not just entitiesdefinedin the samenamespace.To relateto an entity definedin a different classor
bundle, enter a full namespace as the targetEntity.

Now that you'veaddednew propertiesto both the Product and Category classes,tell Doctrine to
generate the missing getter and setter methods for you:

1 $ php bin/console doctrine:generate:entities AppBundle

Ignore the Doctrine metadatafor a moment. You now have two classes- Product and Category,
with a natural many-to-onerelationship. The Product classholds a singleCategory object, and the
Category classholdsacollectionof Product objects.In other words,you'vebuilt your classesin away
that makessensefor your application.The fact that the dataneedsto bepersistedto a databaseis always
secondary.

Now, review the metadataabove the Product entity's $category property. It tells Doctrine that
the related classis Category, and that the id of the related categoryrecord should be stored in a
category_id field on theproduct table.

In other words, the relatedCategory objectwill bestoredin the $category property, but behind the
scenes,Doctrine will persistthis relationshipby storingthe category'sid in thecategory_id column of
the product table.

PDF brought to you by

generated on July 28, 2016

Chapter 10: Databases and Doctrine | 106

http://sensiolabs.com

Listing 10-34

Listing 10-35

The metadataabovethe Category entity's $products property is lesscomplicated. It simply tells
Doctrine to look at theProduct.category property to figure out how the relationship is mapped.

Before you continue, be sure to tell Doctrine to add the new category table, the new
product.category_id column, and the new foreign key:

1 $ php bin/console doctrine:schema:update --force

Saving Related Entities

Now you can see this new code in action! Imagine you're inside a controller:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

// ...

use AppBundle\Entity\Category ;
use AppBundle\Entity\Product ;
use Symfony\Component\HttpFoundation\Response;

class DefaultController extends Controller
{

public function createProductAction ()
{

$category = new Category();
$category->setName('Computer Peripherals');

$product = new Product();
$product->setName('Keyboard');
$product->setPrice (19.99);
$product->setDescription ('Ergonomic and stylish!');

// relate this product to the category
$product->setCategory($category);

$em= $this ->getDoctrine () ->getManager();
$em->persist ($category);
$em->persist ($product);
$em->flush ();

return new Response(
'Saved new product with id: ' . $product->getId ()
. ' and new category with id: ' . $category->getId ()

);
}

}

PDF brought to you by

generated on July 28, 2016

Chapter 10: Databases and Doctrine | 107

http://sensiolabs.com

Listing 10-36

Listing 10-37

Now, a singlerow is addedto both the category and product tables.The product.category_id
column for the new product is set to whateverthe id is of the new category.Doctrine managesthe
persistence of this relationship for you.

Fetching Related Objects

When you needto fetch associatedobjects,your workflow looks just like it did before.First, fetch a
$product object and then access its relatedCategory object:

1
2
3
4
5
6
7
8
9

10

public function showAction($productId)
{

$product = $this ->getDoctrine ()
->getRepository ('AppBundle:Product')
->find ($productId);

$categoryName= $product->getCategory() ->getName();

// ...
}

In this example,you first query for a Product objectbasedon the product's id . This issuesa query for
just theproduct dataandhydratesthe$product objectwith that data.Later,whenyou call$product-
>getCategory()->getName() , Doctrine silently makesa secondquery to find the Category that's
related to thisProduct. It prepares the$category object and returns it to you.

What's important is the fact that you haveeasyaccessto the product'srelatedcategory,but the category
data isn't actually retrieved until you ask for the category (i.e. it's "lazily loaded").

You can also query in the other direction:

1
2
3
4
5
6
7
8
9

10

public function showProductsAction($categoryId)
{

$category = $this ->getDoctrine ()
->getRepository ('AppBundle:Category')
->find ($categoryId);

$products = $category->getProducts ();

// ...
}

PDF brought to you by

generated on July 28, 2016

Chapter 10: Databases and Doctrine | 108

http://sensiolabs.com

Listing 10-38

Listing 10-39

In this case,the samethings occur: you first queryout for a singleCategory object,and then Doctrine
makesa secondquery to retrievethe relatedProduct objects,but only once/if you ask for them (i.e.
when you call ->getProducts()). The $products variableis an array of all Product objectsthat
relate to the givenCategory object via theircategory_id value.

Relationships and Proxy Classes

This "lazy loading" is possiblebecause,when necessary,Doctrine returns a "proxy" object in place
of the true object. Look again at the above example:

1
2
3
4
5
6
7
8
9

$product = $this ->getDoctrine ()
->getRepository ('AppBundle:Product')
->find ($productId);

$category = $product->getCategory();

// prints "Proxies\AppBundleEntityCategoryProxy"
dump(get_class ($category));
die ();

This proxy object extends the true Category object, and looks and acts exactly like it. The
differenceis that, by usinga proxy object,Doctrine candelayqueryingfor the realCategory data
until you actually need that data (e.g. until you call$category->getName()).

The proxy classesare generatedby Doctrine and stored in the cachedirectory. And though you'll
probably neverevennotice that your $category object is actuallya proxy object, it's important to
keep it in mind.

In the next section,whenyou retrievethe product andcategorydataall at once(via a join), Doctrine
will return the trueCategory object, since nothing needs to be lazily loaded.

Joining Related Records

In the aboveexamples,two queriesweremade- one for the original object (e.g.a Category) and one
for the related object(s) (e.g. theProduct objects).

Remember that you can see all of the queries made during a request via the web debug toolbar.

Of course,if you know up front that you'll needto accessboth objects,you canavoid the secondquery
by issuing a join in the original query. Add the following method to theProductRepository class:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// src/AppBundle/Entity/ProductRepository.php
public function findOneByIdJoinedToCategory($productId)
{

$query = $this ->getEntityManager ()
->createQuery(

'SELECT p, c FROM AppBundle:Product p
JOIN p.category c
WHERE p.id = :id'

) ->setParameter('id' , $productId);

try {
return $query->getSingleResult ();

} catch (\Doctrine\ORM\NoResultException $e) {
return null ;

}
}

PDF brought to you by

generated on July 28, 2016

Chapter 10: Databases and Doctrine | 109

http://sensiolabs.com

Listing 10-40

Listing 10-41

Listing 10-42

Now, you can use this method in your controller to query for a Product object and its related
Category with just one query:

1
2
3
4
5
6
7
8
9

10

public function showAction($productId)
{

$product = $this ->getDoctrine ()
->getRepository ('AppBundle:Product')
->findOneByIdJoinedToCategory($productId);

$category = $product->getCategory();

// ...
}

More Information on Associations

This section has been an introduction to one common type of entity relationship, the one-to-many
relationship.For moreadvanceddetailsandexamplesof how to useother typesof relations(e.g.one-to-
one, many-to-many), see Doctrine'sAssociation Mapping Documentation15.

If you're using annotations, you'll need to prepend all annotations with ORM\ (e.g.
ORM\OneToMany), which is not reflectedin Doctrine'sdocumentation.You'll alsoneedto include
the use Doctrine\ORM\Mapping as ORM;statement,which imports the ORMannotations
prefix.

Configuration
Doctrine is highly configurable,though you probablywon't everneedto worry aboutmostof its options.
To find out more about configuring Doctrine, see the Doctrine section of theconfig reference.

Lifecycle Callbacks
Sometimes,you needto perform an action right beforeor afteran entity is inserted,updated,or deleted.
Thesetypesof actionsareknown as"lifecycle" callbacks,asthey'recallbackmethodsthat you needto
executeduring different stagesof the lifecycleof an entity (e.g. the entity is inserted,updated,deleted,
etc).

If you're using annotations for your metadata,start by enabling the lifecycle callbacks.This is not
necessary if you're using YAML or XML for your mapping.

1
2
3
4
5
6
7
8

/**
* @ORM\Entity()
* @ORM\HasLifecycleCallbacks()
*/

class Product
{

// ...
}

Now, you can tell Doctrine to executea method on any of the availablelifecycleevents.For example,
supposeyou want to set a createdAt date column to the current date, only when the entity is first
persisted (i.e. inserted):

15. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/association-mapping.html

PDF brought to you by

generated on July 28, 2016

Chapter 10: Databases and Doctrine | 110

http://sensiolabs.com

1
2
3
4
5
6
7
8
9

// src/AppBundle/Entity/Product.php

/**
* @ORM\PrePersist
*/

public function setCreatedAtValue()
{

$this ->createdAt = new \DateTime();
}

The aboveexampleassumesthat you'vecreatedand mappeda createdAt property (not shown
here).

Now, right before the entity is first persisted,Doctrine will automatically call this method and the
createdAt field will be set to the current date.

Thereareseveralother lifecycleeventsthat you canhook into. For more information on other lifecycle
events and lifecycle callbacks in general, see Doctrine'sLifecycle Events documentation16.

Lifecycle Callbacks and Event Listeners

Notice that the setCreatedAtValue() methodreceivesno arguments.This is alwaysthe casefor
lifecyclecallbacksandis intentional: lifecyclecallbacksshouldbesimplemethodsthat areconcerned
with internally transformingdatain the entity (e.g.settinga created/updatedfield, generatinga slug
value).

If you needto do someheavierlifting - like performing logging or sendingan email - you should
registeran externalclassasan eventlisteneror subscriberand give it accessto whateverresources
you need. For more information, seeHow to Register Event Listeners and Subscribers.

Doctrine Field Types Reference
Doctrine comeswith numerousfield typesavailable.Eachof thesemapsa PHPdata type to a specific
column type in whateverdatabaseyou're using. For each field type, the Columncan be configured
further, settingthe length , nullable behavior,nameand other options. To seea list of all available
types and more information, see Doctrine'sMapping Types documentation17.

Summary
With Doctrine, you canfocuson your objectsandhow they'reusedin your applicationandworry about
databasepersistencesecond.This is becauseDoctrine allowsyou to useanyPHPobjectto hold your data
and relies on mapping metadata information to map an object's data to a particular database table.

And eventhough Doctrine revolvesaround a simple concept, it's incredibly powerful, allowing you to
createcomplex queriesand subscribeto eventsthat allow you to take different actions as objectsgo
through their persistence lifecycle.

16. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/events.html#lifecycle-events

17. http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/basic-mapping.html#property-mapping

PDF brought to you by

generated on July 28, 2016

Chapter 10: Databases and Doctrine | 111

http://sensiolabs.com

Learn more

For more information about Doctrine, seethe Doctrine section of the cookbook. Someuseful articles
might be:

¥ How to use Doctrine Extensions: Timestampable, Sluggable, Translatable, etc.
¥ Console Commands
¥ DoctrineFixturesBundle18

¥ DoctrineMongoDBBundle19

18. https://symfony.com/doc/current/bundles/DoctrineFixturesBundle/index.html

19. https://symfony.com/doc/current/bundles/DoctrineMongoDBBundle/index.html

PDF brought to you by

generated on July 28, 2016

Chapter 10: Databases and Doctrine | 112

http://sensiolabs.com

Chapter 11

Databases and Propel

Propelisanopen-sourceObject-RelationalMapping (ORM) for PHPwhich implementstheActiveRecord
pattern1. It allows you to accessyour databaseusinga setof objects,providing a simpleAPI for storing
and retrievingdata.PropelusesPDO asan abstractionlayerand codegenerationto removethe burden
of runtime introspection.

A few yearsago,Propelwasa verypopular alternativeto Doctrine. However, its popularity hasrapidly
declinedandthat'swhy theSymfonybook no longerincludesthePropeldocumentation.Readtheofficial
PropelBundle documentation2 to learn how to integrate Propel into your Symfony projects.

1. https://en.wikipedia.org/wiki/Active_record_pattern

2. https://github.com/propelorm/PropelBundle/blob/1.4/Resources/doc/index.markdown

PDF brought to you by

generated on July 28, 2016

Chapter 11: Databases and Propel | 113

http://sensiolabs.com

Listing 12-1

Chapter 12

Testing

Wheneveryou write a new line of code,you alsopotentially add new bugs.To build better and more
reliable applications, you should test your code using both functional and unit tests.

The PHPUnit Testing Framework
Symfonyintegrateswith an independentlibrary - calledPHPUnit - to giveyou a rich testingframework.
This chapter won't cover PHPUnit itself, but it has its own excellentdocumentation1.

It's recommended to use the latest stable PHPUnit version,installed as PHAR.

Eachtest - whether it's a unit test or a functional test - is a PHP classthat should live in the tests/
directory of your application. If you follow this rule, then you canrun all of your application'stestswith
the following command:

1 $ phpunit

PHPunit is configured by thephpunit.xml.dist file in the root of your Symfony application.

Codecoveragecanbe generatedwith the --coverage-* options, seethe help information that is
shown when using--help for more information.

Unit Tests
A unit test is a testagainsta singlePHPclass,alsocalleda unit. If you want to testthe overallbehaviorof
your application, see the section aboutFunctional Tests.

1. https://phpunit.de/manual/current/en/

PDF brought to you by

generated on July 28, 2016

Chapter 12: Testing | 114

https://phpunit.de/manual/current/en/installation.html#installation.phar
http://sensiolabs.com

Listing 12-2

Listing 12-3

Listing 12-4

Writing Symfony unit tests is no different from writing standard PHPUnit unit tests. Suppose,for
example,that you havean incrediblysimpleclasscalledCalculator in the Util/ directory of the app
bundle:

1
2
3
4
5
6
7
8
9

10

// src/AppBundle/Util/Calculator.php
namespaceAppBundle\Util ;

class Calculator
{

public function add($a, $b)
{

return $a + $b;
}

}

To test this, create a CalculatorTest file in the tests/ AppBundle/Util directory of your
application:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// tests/AppBundle/Util/CalculatorTest.php
namespaceTests\AppBundle\Util ;

use AppBundle\Util\Calculator ;

class CalculatorTest extends \PHPUnit_Framework_TestCase
{

public function testAdd()
{

$calc = new Calculator ();
$result = $calc ->add(30, 12);

// assert that your calculator added the numbers correctly!
$this ->assertEquals (42, $result);

}
}

By convention,the tests/ AppBundledirectory should replicatethe directory of your bundle for
unit tests.So,if you're testinga classin the src/ AppBundle/Util/ directory, put the test in the
tests/AppBundle/Util/ directory.

Justlike in your realapplication- autoloadingis automaticallyenabledvia the app/autoload.php file
(as configured by default in thephpunit.xml.dist file).

Running tests for a given file or directory is also very easy:

1
2
3
4
5
6
7
8
9

10
11

run all tests of the application
$ phpunit

run all tests in the Util directory
$ phpunit tests/AppBundle/Util

run tests for the Calculator class
$ phpunit tests/AppBundle/Util/CalculatorTest.php

run all tests for the entire Bundle
$ phpunit tests/AppBundle/

Functional Tests
Functional testscheckthe integration of the different layersof an application (from the routing to the
views).Theyareno different from unit testsasfar asPHPUnit is concerned,but theyhavea veryspecific
workflow:

PDF brought to you by

generated on July 28, 2016

Chapter 12: Testing | 115

http://sensiolabs.com

Listing 12-5

Listing 12-6

Listing 12-7

¥ Make a request;
¥ Test the response;
¥ Click on a link or submit a form;
¥ Test the response;
¥ Rinse and repeat.

Your First Functional Test

Functional tests are simple PHP files that typically live in the tests/ AppBundle/Controller
directory for your bundle. If you want to test the pageshandledby your PostController class,start
by creating a newPostControllerTest.php file that extends a specialWebTestCaseclass.

As an example, a test could look like this:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

// tests/AppBundle/Controller/PostControllerTest.php
namespaceTests\AppBundle\Controller ;

use Symfony\Bundle\FrameworkBundle\Test\WebTestCase;

class PostControllerTest extends WebTestCase
{

public function testShowPost()
{

$client = static :: createClient ();

$crawler = $client ->request ('GET', '/post/hello-world');

$this ->assertGreaterThan(
0,
$crawler ->filter ('html:contains("Hello World")') ->count()

);
}

}

To run your functional tests,the WebTestCaseclassbootstrapsthe kernel of your application. In
mostcases,this happensautomatically.However,if your kernelis in anon-standarddirectory,you'll
needto modify your phpunit.xml.dist file to setthe KERNEL_DIRenvironmentvariableto the
directory of your kernel:

1
2
3
4
5
6
7

<?xml version="1.0" charset="utf-8" ?>
<phpunit>

<php>
<server name="KERNEL_DIR"value="/path/to/your/app/" />

</php>
<!-- ... -->

</phpunit>

ThecreateClient() methodreturnsaclient, which is like abrowserthat you'll useto crawl your site:

$crawler = $client ->request ('GET', '/post/hello-world');

The request() method (readmore about the requestmethod) returns a Crawler2 object which can
be used to select elements in the response, click on links and submit forms.

The Crawler only works when the responseis an XML or an HTML document. To get the raw
content response, call$client->getResponse()->getContent() .

2. http://api.symfony.com/master/Symfony/Component/DomCrawler/Crawler.html

PDF brought to you by

generated on July 28, 2016

Chapter 12: Testing | 116

http://sensiolabs.com

Listing 12-8

Listing 12-9

Listing 12-10

Listing 12-11

Click on a link by first selectingit with the crawler using either an XPathexpressionor a CSSselector,
then use the client to click on it. For example:

1
2
3
4
5
6
7
8

$link = $crawler
->filter ('a:contains("Greet")') // find all links with the text "Greet"
->eq(1) // select the second link in the list
->link ()

;

// and click it
$crawler = $client ->click ($link);

Submittinga form is verysimilar: selecta form button, optionally overridesomeform valuesandsubmit
the corresponding form:

1
2
3
4
5
6
7
8

$form = $crawler ->selectButton ('submit') ->form();

// set some values
$form['name'] = 'Lucas' ;
$form['form_name[subject]'] = 'Hey there!' ;

// submit the form
$crawler = $client ->submit($form);

The form canalsohandleuploadsand containsmethodsto fill in different typesof form fields (e.g.
select() and tick()). For details, see theFormssection below.

Now that you caneasilynavigatethrough an application,useassertionsto test that it actuallydoeswhat
you expect it to. Use the Crawler to make assertions on the DOM:

// Assert that the response matches a given CSS selector.
$this ->assertGreaterThan(0, $crawler ->filter ('h1') ->count());

Or testagainstthe responsecontentdirectly if you just want to assertthat the contentcontainssometext
or in case that the response is not an XML/HTML document:

$this ->assertContains (
'Hello World' ,
$client ->getResponse() ->getContent()

);

PDF brought to you by

generated on July 28, 2016

Chapter 12: Testing | 117

http://sensiolabs.com

Listing 12-12

Listing 12-13

Useful Assertions

To get you started faster, here is a list of the most common and useful test assertions:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

use Symfony\Component\HttpFoundation\Response;

// ...

// Assert that there is at least one h2 tag
// with the class "subtitle"
$this ->assertGreaterThan(

0,
$crawler ->filter ('h2.subtitle') ->count()

);

// Assert that there are exactly 4 h2 tags on the page
$this ->assertCount(4, $crawler ->filter ('h2'));

// Assert that the "Content-Type" header is "application/json"
$this ->assertTrue (

$client ->getResponse() ->headers->contains (
'Content-Type' ,
'application/json'

),
'the "Content-Type" header is "application/json"' // optional message shown on failure

);

// Assert that the response content contains a string
$this ->assertContains ('foo' , $client ->getResponse() ->getContent());
// ...or matches a regex
$this ->assertRegExp('/foo(bar)?/' , $client ->getResponse() ->getContent());

// Assert that the response status code is 2xx
$this ->assertTrue ($client ->getResponse() ->isSuccessful (), 'response status is 2xx');
// Assert that the response status code is 404
$this ->assertTrue ($client ->getResponse() ->isNotFound());
// Assert a specific 200 status code
$this ->assertEquals (

200, // or Symfony\Component\HttpFoundation\Response::HTTP_OK
$client ->getResponse() ->getStatusCode()

);

// Assert that the response is a redirect to /demo/contact
$this ->assertTrue (

$client ->getResponse() ->isRedirect ('/demo/contact'),
'response is a redirect to /demo/contact'

);
// ...or simply check that the response is a redirect to any URL
$this ->assertTrue ($client ->getResponse() ->isRedirect ());

Working with the Test Client
The test client simulates an HTTP client like a browser and makes requests into your Symfony
application:

$crawler = $client ->request ('GET', '/post/hello-world');

The request() method takes the HTTP method and a URL as argumentsand returns a Crawler
instance.

Hardcodingthe requestURLsis a bestpracticefor functional tests.If the testgeneratesURLsusing
the Symfonyrouter, it won't detectanychangemadeto the applicationURLswhich mayimpact the
end users.

PDF brought to you by

generated on July 28, 2016

Chapter 12: Testing | 118

http://sensiolabs.com

Listing 12-14

Listing 12-15

Listing 12-16

Listing 12-17

More about therequest() Method:

The full signature of therequest() method is:

1
2
3
4
5
6
7
8
9

request (
$method,
$uri ,
array $parameters = array (),
array $files = array (),
array $server = array (),
$content = null ,
$changeHistory = true

)

The server array is the raw valuesthat you'd expect to normally find in the PHP $_SERVER3

superglobal.For example,to set the Content-Type, Referer and X-Requested-WithHTTP
headers, you'd pass the following (mind theHTTP_prefix for non standard headers):

1
2
3
4
5
6
7
8
9

10
11

$client ->request (
'GET',
'/post/hello-world' ,
array (),
array (),
array (

'CONTENT_TYPE' => 'application/json' ,
'HTTP_REFERER' => '/foo/bar' ,
'HTTP_X-Requested-With' => 'XMLHttpRequest',

)
);

Usethe crawlerto find DOM elementsin the response.Theseelementscanthen beusedto click on links
and submit forms:

1
2
3
4
5

$link = $crawler ->selectLink ('Go elsewhere...') ->link ();
$crawler = $client ->click ($link);

$form = $crawler ->selectButton ('validate') ->form();
$crawler = $client ->submit($form, array ('name' => 'Fabien'));

The click() and submit() methodsboth return a Crawler object.Thesemethodsarethe bestway
to browseyour application as it takescareof a lot of things for you, like detectingthe HTTP method
from a form and giving you a nice API for uploading files.

You will learn more about theLink andFormobjects in theCrawlersection below.

The request methodcanalsobeusedto simulateform submissionsdirectly or perform morecomplex
requests. Some useful examples:

1
2
3
4
5
6
7
8
9

10

// Directly submit a form (but using the Crawler is easier!)
$client ->request ('POST', '/submit' , array ('name' => 'Fabien'));

// Submit a raw JSON string in the request body
$client ->request (

'POST',
'/submit' ,
array (),
array (),
array ('CONTENT_TYPE'=> 'application/json'),

3. http://php.net/manual/en/reserved.variables.server.php

PDF brought to you by

generated on July 28, 2016

Chapter 12: Testing | 119

http://sensiolabs.com

Listing 12-18

Listing 12-19

Listing 12-20

Listing 12-21

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

'{"name":"Fabien"}'
);

// Form submission with a file upload
use Symfony\Component\HttpFoundation\File\UploadedFile ;

$photo = new UploadedFile(
'/path/to/photo.jpg' ,
'photo.jpg' ,
'image/jpeg' ,
123

);
$client ->request (

'POST',
'/submit' ,
array ('name' => 'Fabien'),
array ('photo' => $photo)

);

// Perform a DELETE request and pass HTTP headers
$client ->request (

'DELETE',
'/post/12' ,
array (),
array (),
array ('PHP_AUTH_USER'=> 'username' , 'PHP_AUTH_PW'=> 'pa$$word')

);

Last but not least,you can forceeachrequestto be executedin its own PHPprocessto avoid any side-
effects when working with several clients in the same script:

$client ->insulate ();

Browsing

The Client supports many operations that can be done in a real browser:

1
2
3
4
5
6

$client ->back();
$client ->forward ();
$client ->reload ();

// Clears all cookies and the history
$client ->restart ();

Accessing Internal Objects

If you use the client to test your application, you might want to access the client's internal objects:

$history = $client ->getHistory ();
$cookieJar = $client ->getCookieJar();

You can also get the objects related to the latest request:

1
2
3
4
5
6
7
8
9

10
11

// the HttpKernel request instance
$request = $client ->getRequest();

// the BrowserKit request instance
$request = $client ->getInternalRequest ();

// the HttpKernel response instance
$response = $client ->getResponse();

// the BrowserKit response instance
$response = $client ->getInternalResponse ();

PDF brought to you by

generated on July 28, 2016

Chapter 12: Testing | 120

http://sensiolabs.com

Listing 12-22

Listing 12-23

Listing 12-24

Listing 12-25

Listing 12-26

Listing 12-27

12
13 $crawler = $client ->getCrawler ();

If your requests are not insulated, you can also access theContainer and theKernel :

$container = $client ->getContainer ();
$kernel = $client ->getKernel ();

Accessing the Container

It's highly recommendedthat a functional test only tests the Response.But under certain very rare
circumstances,you might want to accesssomeinternal objectsto write assertions.In suchcases,you can
access the Dependency Injection Container:

$container = $client ->getContainer ();

Bewarned that this doesnot work if you insulate the client or if you usean HTTP layer. For a list of
services available in your application, use thedebug:container console task.

If the information you need to check is available from the profiler, use it instead.

Accessing the Profiler Data

On eachrequest,you canenablethe Symfonyprofiler to collectdataabout the internal handling of that
request.For example,the profiler could be usedto verify that a givenpageexecuteslessthan a certain
number of database queries when loading.

To get the Profiler for the last request, do the following:

1
2
3
4
5
6
7

// enable the profiler for the very next request
$client ->enableProfiler ();

$crawler = $client ->request ('GET', '/profiler');

// get the profile
$profile = $client ->getProfile ();

For specificdetailson usingthe profiler insidea test,seethe How to UsetheProfiler in a FunctionalTest
cookbook entry.

Redirecting

When a requestreturnsa redirectresponse,the client doesnot follow it automatically.You canexamine
the response and force a redirection afterwards with thefollowRedirect() method:

$crawler = $client ->followRedirect ();

If you want the client to automatically follow all redirects, you can force him with the
followRedirects() method:

$client ->followRedirects ();

If you passfalse to the followRedirects() method, the redirects will no longer be followed:

$client ->followRedirects (false);

PDF brought to you by

generated on July 28, 2016

Chapter 12: Testing | 121

http://sensiolabs.com

Listing 12-28

Listing 12-29

The Crawler
A Crawler instanceis returned eachtime you makea requestwith the Client. It allows you to traverse
HTML documents, select nodes, find links and forms.

Traversing

Like jQuery, the Crawlerhasmethodsto traversethe DOM of an HTML/ XML document.For example,
the following finds all input[type=submit] elements,selectsthe last one on the page,and then
selects its immediate parent element:

1
2
3
4
5

$newCrawler = $crawler ->filter ('input[type=submit]')
->last ()
->parents ()
->first ()

;

Many other methods are also available:
filter('h1.title')filter('h1.title')

Nodes that match the CSS selector.

filterXpath('h1')filterXpath('h1')

Nodes that match the XPath expression.

eq(1)eq(1)

Node for the specified index.

first()first()

First node.

last()last()

Last node.

siblings()siblings()

Siblings.

nextAll()nextAll()

All following siblings.

previousAll()previousAll()

All preceding siblings.

parents()parents()

Returns the parent nodes.

children()children()

Returns children nodes.

reduce($lambda)reduce($lambda)

Nodes for which the callable does not return false.

Sinceeachof thesemethodsreturnsanewCrawler instance,you cannarrow down your nodeselection
by chaining the method calls:

1
2
3

$crawler
->filter ('h1')
->reduce(function ($node, $i) {

PDF brought to you by

generated on July 28, 2016

Chapter 12: Testing | 122

http://sensiolabs.com

Listing 12-30

Listing 12-31

Listing 12-32

Listing 12-33

4
5
6
7
8
9

if (! $node->getAttribute ('class')) {
return false ;

}
})
->first ()

;

Use thecount() function to get the number of nodes stored in a Crawler:count($crawler)

Extracting Information

The Crawler can extract information from the nodes:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// Returns the attribute value for the first node
$crawler ->attr ('class');

// Returns the node value for the first node
$crawler ->text ();

// Extracts an array of attributes for all nodes
// (_text returns the node value)
// returns an array for each element in crawler,
// each with the value and href
$info = $crawler ->extract (array ('_text' , 'href'));

// Executes a lambda for each node and return an array of results
$data = $crawler ->each(function ($node, $i) {

return $node->attr ('href');
});

Links

To select links, you can use the traversing methods above or the convenientselectLink() shortcut:

$crawler ->selectLink ('Click here');

This selectsall links that contain the giventext, or clickableimagesfor which the alt attribute contains
the given text. Like the other filtering methods, this returns anotherCrawler object.

Onceyou'veselecteda link, you haveaccessto aspecialLink object,which hashelpful methodsspecific
to links (suchasgetMethod() andgetUri()). To click on the link, usethe Client'sclick() method
and pass it aLink object:

$link = $crawler ->selectLink ('Click here') ->link ();

$client ->click ($link);

Forms

Formscan be selectedusing their buttons, which can be selectedwith the selectButton() method,
just like links:

$buttonCrawlerNode = $crawler ->selectButton ('submit');

PDF brought to you by

generated on July 28, 2016

Chapter 12: Testing | 123

http://sensiolabs.com

Listing 12-34

Listing 12-35

Listing 12-36

Listing 12-37

Listing 12-38

Listing 12-39

Listing 12-40

Notice that you selectform buttons andnot forms asa form canhaveseveralbuttons; if you usethe
traversing API, keep in mind that you must look for a button.

The selectButton() method canselectbutton tagsand submit input tags.It usesseveralpartsof
the buttons to find them:

¥ The value attribute value;
¥ The id or alt attribute value for images;
¥ The id or nameattribute value forbutton tags.

Onceyou havea Crawler representinga button, call the form() method to geta Forminstancefor the
form wrapping the button node:

$form = $buttonCrawlerNode->form();

When calling the form() method, you can alsopassan array of field valuesthat overridesthe default
ones:

$form = $buttonCrawlerNode->form(array (
'name' => 'Fabien' ,
'my_form[subject]' => 'Symfony rocks!' ,

));

And if you want to simulate a specific HTTP method for the form, pass it as a second argument:

$form = $buttonCrawlerNode->form(array (), 'DELETE');

The Client can submitForminstances:

$client ->submit($form);

The field values can also be passed as a second argument of thesubmit() method:

$client ->submit($form, array (
'name' => 'Fabien' ,
'my_form[subject]' => 'Symfony rocks!' ,

));

For morecomplexsituations,usethe Forminstanceasanarrayto setthe valueof eachfield individually:

// Change the value of a field
$form['name'] = 'Fabien' ;
$form['my_form[subject]'] = 'Symfony rocks!' ;

There is also a nice API to manipulate the values of the fields according to their type:

1
2
3
4
5
6
7
8

// Select an option or a radio
$form['country'] ->select ('France');

// Tick a checkbox
$form['like_symfony'] ->tick ();

// Upload a file
$form['photo'] ->upload('/path/to/lucas.jpg');

If you purposefully want to select "invalid" select/radio values, seeSelecting Invalid Choice Values.

PDF brought to you by

generated on July 28, 2016

Chapter 12: Testing | 124

http://sensiolabs.com

Listing 12-41

Listing 12-42

Listing 12-43

You can get the valuesthat will be submitted by calling the getValues() method on the Form
object. The uploaded files are available in a separatearray returned by getFiles() . The
getPhpValues() andgetPhpFiles() methodsalsoreturn the submittedvalues,but in the PHP
format (it convertsthe keys with squarebracketsnotation - e.g. my_form[subject] - to PHP
arrays).

Adding and Removing Forms to a Collection

If you use a Collection of Forms, you can't add fields to an existing form with
$form['task[tags][0][name]'] = 'foo'; . This resultsin anerror Unreachable field "É"
because$form canonly be usedin order to setvaluesof existingfields. In order to add new fields, you
have to add the values to the raw data array:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

// Get the form.
$form = $crawler ->filter ('button') ->form();

// Get the raw values.
$values = $form->getPhpValues();

// Add fields to the raw values.
$values['task']['tag'][0]['name'] = 'foo' ;
$values['task']['tag'][1]['name'] = 'bar' ;

// Submit the form with the existing and new values.
$crawler = $this ->client ->request ($form->getMethod(), $form->getUri (), $values,

$form->getPhpFiles ());

// The 2 tags have been added to the collection.
$this ->assertEquals (2, $crawler ->filter ('ul.tags > li') ->count());

Where task[tags][0][name] is the name of a field created with JavaScript.

You can remove an existing field, e.g. a tag:

1
2
3
4
5
6
7
8
9

10
11
12

// Get the values of the form.
$values = $form->getPhpValues();

// Remove the first tag.
unset($values['task']['tags'][0]);

// Submit the data.
$crawler = $client ->request ($form->getMethod(), $form->getUri (),

$values, $form->getPhpFiles ());

// The tag has been removed.
$this ->assertEquals (0, $crawler ->filter ('ul.tags > li') ->count());

Testing Configuration
The Client used by functional tests createsa Kernel that runs in a specialtest environment. Since
Symfonyloadsthe app/config/ config_test.yml in the test environment,you cantweak any of
your application's settings specifically for testing.

For example, by default, the Swift Mailer is configured to not actually deliver emails in the test
environment. You can see this under theswiftmailer configuration option:

1
2
3

app/config/config_test.yml

...

PDF brought to you by

generated on July 28, 2016

Chapter 12: Testing | 125

http://sensiolabs.com

Listing 12-44

Listing 12-45

Listing 12-46

Listing 12-47

Listing 12-48

4
5

swiftmailer :
disable_delivery : true

You canalsousea different environmententirely,or overridethe defaultdebugmode(true) by passing
each as options to thecreateClient() method:

$client = static :: createClient (array (
'environment' => 'my_test_env' ,
'debug' => false ,

));

If your application behavesaccording to someHTTP headers,passthem as the secondargument of
createClient() :

$client = static :: createClient (array (), array (
'HTTP_HOST' => 'en.example.com' ,
'HTTP_USER_AGENT'=> 'MySuperBrowser/1.0' ,

));

You can also override HTTP headers on a per request basis:

$client ->request ('GET', '/' , array (), array (), array (
'HTTP_HOST' => 'en.example.com' ,
'HTTP_USER_AGENT'=> 'MySuperBrowser/1.0' ,

));

The test client is availableasa servicein the container in the test environment(or whereverthe
framework.testoption is enabled). This means you can override the service entirely if you need to.

PHPUnit Configuration

Eachapplication hasits own PHPUnit configuration, stored in the phpunit.xml.dist file. You can
edit this file to changethe defaultsor createa phpunit.xml file to setup a configuration for your local
machine only.

Store thephpunit.xml.dist file in your code repository and ignore thephpunit.xml file.

By default, only the testsstored in /tests are run via the phpunit command,as configured in the
phpunit.xml.dist file:

1
2
3
4
5
6
7
8
9

10

<!-- phpunit.xml.dist -->
<phpunit>

<!-- ... -->
<testsuites>

<testsuite name="Project Test Suite" >
<directory> tests </directory>

</testsuite>
</testsuites>
<!-- ... -->

</phpunit>

But you can easilyadd more directories.For instance,the following configuration adds tests from a
customlib/tests directory:

1
2

<!-- phpunit.xml.dist -->
<phpunit>

PDF brought to you by

generated on July 28, 2016

Chapter 12: Testing | 126

http://sensiolabs.com

Listing 12-49

3
4
5
6
7
8
9

10
11

<!-- ... -->
<testsuites>

<testsuite name="Project Test Suite" >
<!-- ... --->
<directory> lib/tests </directory>

</testsuite>
</testsuites>
<!-- ... --->

</phpunit>

To include other directories in the code coverage, also edit the<filter> section:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

<!-- phpunit.xml.dist -->
<phpunit>

<!-- ... -->
<filter>

<whitelist>
<!-- ... -->
<directory> lib </directory>
<exclude>

<!-- ... -->
<directory> lib/tests </directory>

</exclude>
</whitelist>

</filter>
<!-- ... --->

</phpunit>

Learn more
¥ The chapter about tests in the Symfony Framework Best Practices
¥ The DomCrawler Component
¥ The CssSelector Component
¥ How to Simulate HTTP Authentication in a Functional Test
¥ How to Test the Interaction of several Clients
¥ How to Use the Profiler in a Functional Test
¥ How to Customize the Bootstrap Process before Running Tests

PDF brought to you by

generated on July 28, 2016

Chapter 12: Testing | 127

http://sensiolabs.com

Listing 13-1

Listing 13-2

Chapter 13

Validation

Validation is a verycommontask in webapplications.Dataenteredin forms needsto bevalidated.Data
also needs to be validated before it is written into a database or passed to a web service.

Symfonyshipswith a Validator1 componentthat makesthis taskeasyand transparent.This component
is based on theJSR303 Bean Validation specification2.

The Basics of Validation
The bestway to understandvalidation is to seeit in action. To start, supposeyou'vecreateda plain-old-
PHP object that you need to use somewhere in your application:

1
2
3
4
5
6
7

// src/AppBundle/Entity/Author.php
namespaceAppBundle\Entity ;

class Author
{

public $name;
}

So far, this is just an ordinary classthat servessome purpose inside your application. The goal of
validation is to tell you if the data of an object is valid. For this to work, you'll configurea list of rules
(called constraints) that the object must follow in order to be valid. Theserules can be specifiedvia a
number of different formats (YAML, XML, annotations, or PHP).

For example, to guarantee that the$nameproperty is not empty, add the following:

1
2
3
4
5
6
7
8

// src/AppBundle/Entity/Author.php

// ...
use Symfony\Component\Validator\Constraints as Assert ;

class Author
{

/**

1. https://github.com/symfony/validator

2. http://jcp.org/en/jsr/detail?id=303

PDF brought to you by

generated on July 28, 2016

Chapter 13: Validation | 128

http://sensiolabs.com

Listing 13-3

Listing 13-4

9
10
11
12

* @Assert\NotBlank()
*/

public $name;
}

Protectedand private propertiescan alsobe validated,aswell as"getter" methods(seeConstraint
Targets).

Using thevalidator Service

Next, to actuallyvalidateanAuthor object,usethevalidate methodon thevalidator service(class
Validator 3). The job of the validator is easy:to readthe constraints(i.e. rules)of a classand verify
if the data on the object satisfiesthoseconstraints.If validation fails, a non-empty list of errors (class
ConstraintViolationList 4) is returned. Take this simple example from inside a controller:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

// ...
use Symfony\Component\HttpFoundation\Response;
use AppBundle\Entity\Author ;

// ...
public function authorAction ()
{

$author = new Author();

// ... do something to the $author object

$validator = $this ->get('validator');
$errors = $validator ->validate ($author);

if (count($errors) > 0) {
/*
* Uses a __toString method on the $errors variable which is a
* ConstraintViolationList object. This gives us a nice string
* for debugging.
*/

$errorsString = (string) $errors ;

return new Response($errorsString);
}

return new Response('The author is valid! Yes!');
}

If the $nameproperty is empty, you will see the following error message:

1
2

AppBundle\Author.name:
This value should not be blank

If you insert a value into thenameproperty, the happy success message will appear.

Most of the time, you won't interact directly with the validator serviceor needto worry about
printing out the errors.Most of the time, you'll usevalidation indirectly when handling submitted
form data. For more information, see theValidation and Forms.

You could also pass the collection of errors into a template:

3. http://api.symfony.com/master/Symfony/Component/Validator/Validator.html

4. http://api.symfony.com/master/Symfony/Component/Validator/ConstraintViolationList.html

PDF brought to you by

generated on July 28, 2016

Chapter 13: Validation | 129

http://sensiolabs.com

Listing 13-5

Listing 13-6

Listing 13-7

1
2
3
4
5

if (count($errors) > 0) {
return $this ->render('author/validation.html.twig' , array (

'errors' => $errors ,
));

}

Inside the template, you can output the list of errors exactly as needed:

1
2
3
4
5
6
7

{# app/Resources/views/author/validation.html.twig #}
<h3>The author has the following errors </h3>

{% for error in errors %}

 {{ error.message }}
{% endfor %}

Eachvalidationerror (calleda"constraintviolation"), is representedby aConstraintViolation 5

object.

Validation and Forms

The validator servicecan be used at any time to validate any object. In reality, however, you'll
usuallywork with the validator indirectly whenworking with forms. Symfony'sform library usesthe
validator serviceinternally to validate the underlying object after valueshavebeensubmitted. The
constraint violations on the object are convertedinto FormError objectsthat can easilybe displayed
with your form. The typical form submission workflow looks like the following from inside a controller:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// ...
use AppBundle\Entity\Author ;
use AppBundle\Form\AuthorType;
use Symfony\Component\HttpFoundation\Request;

// ...
public function updateAction (Request $request)
{

$author = new Author();
$form = $this ->createForm(AuthorType:: class , $author);

$form->handleRequest($request);

if ($form->isValid ()) {
// the validation passed, do something with the $author object

return $this ->redirectToRoute (...);
}

return $this ->render('author/form.html.twig' , array (
'form' => $form->createView(),

));
}

This example uses anAuthorTypeform class, which is not shown here.

For more information, see theFormschapter.

5. http://api.symfony.com/master/Symfony/Component/Validator/ConstraintViolation.html

PDF brought to you by

generated on July 28, 2016

Chapter 13: Validation | 130

http://sensiolabs.com

Listing 13-8

Configuration
The Symfonyvalidator is enabledby default, but you must explicitly enableannotationsif you'reusing
the annotation method to specify your constraints:

1
2
3

app/config/config.yml
framework:

validation : { enable_annotations : true }

Constraints
The validator is designedto validate objectsagainstconstraints(i.e. rules). In order to validate an
object, simply map one or more constraints to its class and then pass it to thevalidator service.

Behind the scenes,a constraint is simply a PHP object that makesan assertivestatement.In real life,
a constraint could be: 'The cake must not be burned'. In Symfony, constraints are similar: they are
assertionsthat a condition is true. Given a value,a constraint will tell you if that valueadheresto the
rules of the constraint.

Supported Constraints

Symfony packages many of the most commonly-needed constraints:

Basic Constraints

Thesearethe basicconstraints:usethem to assertverybasicthings about the valueof propertiesor the
return value of methods on your object.

¥ NotBlank
¥ Blank
¥ NotNull
¥ IsNull
¥ IsTrue
¥ IsFalse
¥ Type

String Constraints

¥ Email
¥ Length
¥ Url
¥ Regex
¥ Ip
¥ Uuid

Number Constraints

¥ Range

Comparison Constraints

¥ EqualTo
¥ NotEqualTo

PDF brought to you by

generated on July 28, 2016

Chapter 13: Validation | 131

http://sensiolabs.com

¥ IdenticalTo
¥ NotIdenticalTo
¥ LessThan
¥ LessThanOrEqual
¥ GreaterThan
¥ GreaterThanOrEqual

Date Constraints

¥ Date
¥ DateTime
¥ Time

Collection Constraints

¥ Choice
¥ Collection
¥ Count
¥ UniqueEntity
¥ Language
¥ Locale
¥ Country

File Constraints

¥ File
¥ Image

Financial and other Number Constraints

¥ Bic
¥ CardScheme
¥ Currency
¥ Luhn
¥ Iban
¥ Isbn
¥ Issn

Other Constraints

¥ Callback
¥ Expression
¥ All
¥ UserPassword
¥ Valid

You canalsocreateyour own customconstraints.This topic is coveredin the "How to Createa custom
Validation Constraint" article of the cookbook.

Constraint Configuration

Someconstraints, like NotBlank, are simple whereasothers, like the Choiceconstraint, have several
configurationoptionsavailable.Supposethat the Author classhasanotherpropertycalledgender that
can be set to either "male", "female" or "other":

PDF brought to you by

generated on July 28, 2016

Chapter 13: Validation | 132

http://sensiolabs.com

Listing 13-9

Listing 13-10

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

// src/AppBundle/Entity/Author.php

// ...
use Symfony\Component\Validator\Constraints as Assert ;

class Author
{

/**
* @Assert\Choice(
* choices = { "male", "female", "other" },
* message = "Choose a valid gender."
*)
*/

public $gender;

// ...
}

The options of a constraint canalwaysbe passedin asan array.Someconstraints,however,alsoallow
you to passthe valueof one,"default", option in placeof the array.In the caseof the Choiceconstraint,
the choices options can be specified in this way.

1
2
3
4
5
6
7
8
9

10
11
12
13
14

// src/AppBundle/Entity/Author.php

// ...
use Symfony\Component\Validator\Constraints as Assert ;

class Author
{

/**
* @Assert\Choice({"male", "female", "other"})
*/

protected $gender;

// ...
}

This is purely meantto makethe configuration of the most common option of a constraint shorterand
quicker.

If you'reeverunsureof how to specifyan option, either checkthe API documentationfor the constraint
or play it safe by always passing in an array of options (the first method shown above).

Translation Constraint Messages
For information on translating the constraint messages, seeTranslating Constraint Messages.

Constraint Targets
Constraintscanbe applied to a classproperty (e.g.name), a public gettermethod (e.g.getFullName)
or an entire class.Propertyconstraintsare the most common and easyto use.Getter constraintsallow
you to specifymore complexvalidation rules.Finally, classconstraintsareintendedfor scenarioswhere
you want to validate a class as a whole.

Properties

Validatingclasspropertiesis the mostbasicvalidation technique.Symfonyallowsyou to validateprivate,
protectedor public properties.The next listing showsyou how to configurethe $firstName property
of anAuthor class to have at least 3 characters.

PDF brought to you by

generated on July 28, 2016

Chapter 13: Validation | 133

http://sensiolabs.com

Listing 13-11

Listing 13-12

Listing 13-13

1
2
3
4
5
6
7
8
9

10
11
12
13

// src/AppBundle/Entity/Author.php

// ...
use Symfony\Component\Validator\Constraints as Assert ;

class Author
{

/**
* @Assert\NotBlank()
* @Assert\Length(min=3)
*/

private $firstName ;
}

Getters

Constraintscanalsobeappliedto the return valueof a method.Symfonyallowsyou to add a constraint
to any public method whosenamestartswith "get", "is" or "has". In this guide, thesetypesof methods
are referred to as "getters".

The benefit of this technique is that it allows you to validate your object dynamically. For example,
supposeyou want to make sure that a passwordfield doesn't match the first name of the user (for
securityreasons).You can do this by creatingan isPasswordLegal method, and then assertingthat
this method must returntrue :

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

// src/AppBundle/Entity/Author.php

// ...
use Symfony\Component\Validator\Constraints as Assert ;

class Author
{

/**
* @Assert\IsTrue(message = "The password cannot match your first name")
*/

public function isPasswordLegal()
{

// ... return true or false
}

}

Now, create theisPasswordLegal() method and include the logic you need:

public function isPasswordLegal()
{

return $this ->firstName !== $this ->password;
}

The keen-eyedamong you will have noticed that the prefix of the getter ("get", "is" or "has") is
omitted in the mapping.This allows you to movethe constraint to a property with the samename
later (or vice versa) without changing your validation logic.

Classes

Someconstraintsapply to the entire classbeing validated. For example,the Callback constraint is a
genericconstraintthat'sappliedto the classitself. When that classis validated,methodsspecifiedby that
constraint are simply executed so that each can provide more custom validation.

PDF brought to you by

generated on July 28, 2016

Chapter 13: Validation | 134

http://sensiolabs.com

Listing 13-14

Validation Groups
So far, you've been able to add constraints to a classand ask whether or not that classpassesall
the defined constraints. In somecases,however, you'll need to validate an object againstonly some
constraintson that class.To do this, you can organizeeachconstraint into one or more "validation
groups", and then apply validation against just one group of constraints.

For example,supposeyou havea Userclass,which is usedboth when a userregistersand when a user
updates their contact information later:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

// src/AppBundle/Entity/User.php
namespaceAppBundle\Entity ;

use Symfony\Component\Security\Core\User\UserInterface ;
use Symfony\Component\Validator\Constraints as Assert ;

class User implements UserInterface
{

/**
* @Assert\Email(groups={"registration"})
*/

private $email;

/**
* @Assert\NotBlank(groups={"registration"})
* @Assert\Length(min=7, groups={"registration"})
*/

private $password;

/**
* @Assert\Length(min=2)
*/

private $city ;
}

With this configuration, there are three validation groups:
DefaultDefault

Containstheconstraintsin thecurrentclassandall referencedclassesthat belongto no othergroup.

UserUser

Equivalentto all constraintsof the User object in the Default group. This is alwaysthe nameof the
class. The difference between this andDefault is explained below.

registrationregistration

Contains the constraints on theemail and passwordfields only.

Constraints in the Default group of a classare the constraints that have either no explicit group
configured or that are configured to a group equal to the class name or the stringDefault .

PDF brought to you by

generated on July 28, 2016

Chapter 13: Validation | 135

http://sensiolabs.com

Listing 13-15

Listing 13-16

When validating just the User object, there is no differencebetweenthe Default group and the
User group. But, there is a differenceif User hasembeddedobjects.For example,imagineUser
has an address property that contains someAddress object and that you've added the Valid
constraint to this property so that it's validated when you validate theUserobject.

If you validateUserusingthe Default group, then anyconstraintson the Addressclassthat are
in the Default group will beused.But, if you validateUserusingthe Uservalidation group, then
only constraints on theAddressclass with theUsergroup will be validated.

In other words, theDefault groupandthe classnamegroup(e.g.User) areidentical,exceptwhen
the class is embedded in another object that's actually the one being validated.

If you haveinheritance(e.g.User extends BaseUser) and you validatewith the classname
of the subclass(i.e. User), then all constraints in the User and BaseUserwill be validated.
However, if you validateusing the baseclass(i.e. BaseUser), then only the default constraintsin
the BaseUserclass will be validated.

To tell the validator to usea specificgroup, passoneor more group namesasthe third argumentto the
validate() method:

$errors = $validator ->validate ($author , null , array ('registration'));

If no groups are specified, all constraints that belong to the groupDefault will be applied.

Of course,you'll usually work with validation indirectly through the form library. For information on
how to use validation groups inside forms, seeValidation Groups.

Group Sequence
In somecases,you want to validateyour groupsby steps.To do this, you canusethe GroupSequence
feature.In this case,an object definesa group sequence,which determinesthe order groupsshould be
validated.

For example,supposeyou havea User classand want to validatethat the usernameand the password
are different only if all other validation passes (in order to avoid multiple error messages).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

// src/AppBundle/Entity/User.php
namespaceAppBundle\Entity ;

use Symfony\Component\Security\Core\User\UserInterface ;
use Symfony\Component\Validator\Constraints as Assert ;

/**
* @Assert\GroupSequence({"User", "Strict"})
*/

class User implements UserInterface
{

/**
* @Assert\NotBlank
*/

private $username;

/**
* @Assert\NotBlank
*/

private $password;

/**
* @Assert\IsTrue(message="The password cannot match your username", groups={"Strict"})
*/

public function isPasswordLegal()

PDF brought to you by

generated on July 28, 2016

Chapter 13: Validation | 136

http://sensiolabs.com

Listing 13-17

Listing 13-18

26
27
28
29

{
return ($this ->username!== $this ->password);

}
}

In this example,it will first validateall constraintsin the groupUser (which is the sameasthe Default
group). Only if all constraints in that group are valid, the second group,Strict , will be validated.

As you havealreadyseenin the previoussection,the Default group and the group containing the
classname(e.g.User) were identical. However,when using Group Sequences,they areno longer
identical.The Default group will now referencethe group sequence,insteadof all constraintsthat
do not belong to any group.

This meansthat you have to use the {ClassName}(e.g. User) group when specifyinga group
sequence.When usingDefault , you getan infinite recursion(astheDefault groupreferencesthe
group sequence,which will contain the Default group which referencesthe samegroup sequence,
...).

Group Sequence Providers

Imagine a User entity which can be a normal user or a premium user. When it's a premium user,
someextra constraintsshould be addedto the userentity (e.g. the credit card details).To dynamically
determinewhich groupsshouldbeactivated,you cancreatea Group SequenceProvider.First, createthe
entity and a new constraint group calledPremium:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

// src/AppBundle/Entity/User.php
namespaceAppBundle\Entity ;

use Symfony\Component\Validator\Constraints as Assert ;

class User
{

/**
* @Assert\NotBlank()
*/

private $name;

/**
* @Assert\CardScheme(
* schemes={"VISA"},
* groups={"Premium"},
*)
*/

private $creditCard ;

// ...
}

Now, change the User class to implement GroupSequenceProviderInterface 6 and add the
getGroupSequence()7, method, which should return an array of groups to use:

1
2
3
4
5
6

// src/AppBundle/Entity/User.php
namespaceAppBundle\Entity ;

// ...
use Symfony\Component\Validator\GroupSequenceProviderInterface ;

6. http://api.symfony.com/master/Symfony/Component/Validator/GroupSequenceProviderInterface.html

7. http://api.symfony.com/master/Symfony/Component/Validator/GroupSequenceProviderInterface.html#method_getGroupSequence

PDF brought to you by

generated on July 28, 2016

Chapter 13: Validation | 137

http://sensiolabs.com

Listing 13-19

Listing 13-20

7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

class User implements GroupSequenceProviderInterface
{

// ...

public function getGroupSequence()
{

$groups = array ('User');

if ($this ->isPremium()) {
$groups[] = 'Premium' ;

}

return $groups;
}

}

At last, you haveto notify the Validator componentthat your Userclassprovidesa sequenceof groups
to be validated:

1
2
3
4
5
6
7
8
9

10
11
12

// src/AppBundle/Entity/User.php
namespaceAppBundle\Entity ;

// ...

/**
* @Assert\GroupSequenceProvider
*/

class User implements GroupSequenceProviderInterface
{

// ...
}

Validating Values and Arrays
Sofar, you'veseenhow you canvalidateentireobjects.But sometimes,you just want to validateasimple
value- like to verify that a string is a valid emailaddress.This is actuallypretty easyto do. From insidea
controller, it looks like this:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

// ...
use Symfony\Component\Validator\Constraints as Assert ;

// ...
public function addEmailAction($email)
{

$emailConstraint = new Assert\Email ();
// all constraint "options" can be set this way
$emailConstraint ->message= 'Invalid email address' ;

// use the validator to validate the value
$errorList = $this ->get('validator') ->validate (

$email,
$emailConstraint

);

if (0 === count($errorList)) {
// ... this IS a valid email address, do something

} else {
// this is *not* a valid email address
$errorMessage = $errorList [0] ->getMessage();

// ... do something with the error
}

// ...
}

PDF brought to you by

generated on July 28, 2016

Chapter 13: Validation | 138

http://sensiolabs.com

By calling validate on the validator, you can passin a raw valueand the constraint object that you
want to validatethat valueagainst.A full list of the availableconstraints- aswell asthe full classname
for each constraint - is available in theconstraints referencesection.

Thevalidate methodreturnsaConstraintViolationList 8 object,which actsjust like anarrayof
errors.Eacherror in the collection is a ConstraintViolation 9 object,which holds the error message
on its getMessagemethod.

Final Thoughts
The Symfonyvalidator is a powerful tool that can be leveragedto guaranteethat the data of any
object is "valid". The power behind validation lies in "constraints",which are rules that you can apply
to properties or getter methods of your object. And while you'll most commonly use the validation
framework indirectly when using forms, remember that it can be used anywhere to validate any object.

Learn more from the Cookbook
¥ How to Create a custom Validation Constraint

8. http://api.symfony.com/master/Symfony/Component/Validator/ConstraintViolationList.html

9. http://api.symfony.com/master/Symfony/Component/Validator/ConstraintViolation.html

PDF brought to you by

generated on July 28, 2016

Chapter 13: Validation | 139

http://sensiolabs.com

Listing 14-1

Chapter 14

Forms

Dealing with HTML forms is one of the most common - and challenging- tasksfor a web developer.
Symfonyintegratesa Form componentthat makesdealingwith forms easy.In this chapter,you'll build
a complex form from the ground up, learningthe most important featuresof the form library along the
way.

The SymfonyForm componentis a standalonelibrary that canbeusedoutsideof Symfonyprojects.
For more information, see theForm component documentationon GitHub.

Creating a Simple Form
Supposeyou'rebuilding asimpletodo list applicationthat will needto display"tasks".Becauseyour users
will needto edit and createtasks,you'regoing to needto build a form. But beforeyou begin,first focus
on the genericTaskclass that represents and stores the data for a single task:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

// src/AppBundle/Entity/Task.php
namespaceAppBundle\Entity ;

class Task
{

protected $task;
protected $dueDate;

public function getTask()
{

return $this ->task ;
}

public function setTask($task)
{

$this ->task = $task;
}

public function getDueDate()
{

return $this ->dueDate;
}

PDF brought to you by

generated on July 28, 2016

Chapter 14: Forms | 140

http://sensiolabs.com

Listing 14-2

23
24
25
26
27
28

public function setDueDate(\DateTime $dueDate = null)
{

$this ->dueDate = $dueDate;
}

}

This classis a "plain-old-PHP-object"because,so far, it hasnothing to do with Symfonyor any other
library. It's quite simply a normal PHPobject that directly solvesa problem insideyour application (i.e.
the needto representa task in your application). Of course,by the end of this chapter,you'll be ableto
submit data to aTaskinstance (via an HTML form), validate its data, and persist it to the database.

Building the Form

Now that you'vecreateda Taskclass,the next step is to createand render the actual HTML form. In
Symfony,this is doneby building a form objectand then renderingit in a template.For now, this canall
be done from inside a controller:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

// src/AppBundle/Controller/DefaultController.php
namespaceAppBundle\Controller ;

use AppBundle\Entity\Task ;
use Symfony\Bundle\FrameworkBundle\Controller\Controller ;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\Form\Extension\Core\Type\TextType;
use Symfony\Component\Form\Extension\Core\Type\DateType;
use Symfony\Component\Form\Extension\Core\Type\SubmitType;

class DefaultController extends Controller
{

public function newAction(Request $request)
{

// create a task and give it some dummy data for this example
$task = new Task();
$task->setTask('Write a blog post');
$task->setDueDate(new \DateTime('tomorrow'));

$form = $this ->createFormBuilder ($task)
->add('task' , TextType:: class)
->add('dueDate' , DateType:: class)
->add('save' , SubmitType:: class , array ('label' => 'Create Task'))
->getForm();

return $this ->render('default/new.html.twig' , array (
'form' => $form->createView(),

));
}

}

This exampleshowsyou how to build your form directly in the controller. Later, in the "Creating
Form Classes" section, you'll learn how to build your form in a standalone class, which is
recommended as your form becomes reusable.

Creating a form requires relatively little code becauseSymfony form objects are built with a "form
builder". The form builder'spurposeis to allow you to write simpleform "recipes",andhaveit do all the
heavy-lifting of actually building the form.

In this example,you've added two fields to your form - task and dueDate- correspondingto the
task and dueDatepropertiesof the Task class.You'vealso assignedeacha "type" (e.g.TextType
and DateType), representedby its fully qualified classname.Among other things, it determineswhich
HTML form tag(s) is rendered for that field.

PDF brought to you by

generated on July 28, 2016

Chapter 14: Forms | 141

http://sensiolabs.com

Listing 14-3

Finally, you added a submit button with a custom label for submitting the form to the server.

Symfony comes with many built-in types that will be discussed shortly (seeBuilt-in Field Types).

Rendering the Form

Now that the form hasbeencreated,the next stepis to renderit. This is doneby passinga specialform
"view" object to your template(notice the $form->createView() in the controller above)andusinga
set of form helper functions:

1
2
3
4

{# app/Resources/views/default/new.html.twig #}
{{ form_start (form) }}
{{ form_widget(form) }}
{{ form_end(form) }}

This exampleassumesthat you submit the form in a "POST"requestand to the sameURL that it
wasdisplayedin. You will learn later how to changethe requestmethod and the targetURL of the
form.

That's it! Just three lines are needed to render the complete form:
form_start(form)form_start(form)

Renders the start tag of the form, including the correct enctype attribute when using file uploads.

form_widget(form)form_widget(form)

Rendersall the fields, which includes the field element itself, a label and any validation error
messages for the field.

form_end(form)form_end(form)

Rendersthe endtagof the form andanyfieldsthat havenot yetbeenrendered,in caseyou rendered
eachfield yourself.This is usefulfor renderinghidden fieldsand taking advantageof the automatic
CSRF Protection.

Aseasyasthis is, it's not veryflexible(yet).Usually,you'll want to rendereachform field individuallysoyou
can control how the form looks. You'll learn how to do that in the "Rendering a Form in a Template" section.

Beforemovingon, noticehow the renderedtask input field hasthe valueof the task property from the
$task object (i.e. "Write a blog post"). This is the first job of a form: to take data from an object and
translate it into a format that's suitable for being rendered in an HTML form.

PDF brought to you by

generated on July 28, 2016

Chapter 14: Forms | 142

http://sensiolabs.com

Listing 14-4

The form systemis smart enough to accessthe value of the protected task property via the
getTask() and setTask() methods on the Task class.Unlessa property is public, it must
havea "getter" and "setter" method so that the Form component can get and put data onto the
property. For a booleanproperty, you canusean "isser"or "hasser"method (e.g.isPublished()
or hasReminder()) instead of a getter (e.g.getPublished() or getReminder()).

Handling Form Submissions

The secondjob of a form is to translateuser-submitteddatabackto the propertiesof anobject.To make
this happen,the submitted data from the usermust be written into the Form object. Add the following
functionality to your controller:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

// ...
use Symfony\Component\HttpFoundation\Request;

public function newAction(Request $request)
{

// just setup a fresh $task object (remove the dummy data)
$task = new Task();

$form = $this ->createFormBuilder ($task)
->add('task' , TextType:: class)
->add('dueDate' , DateType:: class)
->add('save' , SubmitType:: class , array ('label' => 'Create Task'))
->getForm();

$form->handleRequest($request);

if ($form->isSubmitted () && $form->isValid ()) {
// ... perform some action, such as saving the task to the database

return $this ->redirectToRoute ('task_success');
}

return $this ->render('default/new.html.twig' , array (
'form' => $form->createView(),

));
}

Be aware that the createView() method should be called after handleRequest is called.
Otherwise, changes done in the*_SUBMITevents aren't applied to the view (like validation errors).

This controller follows a common pattern for handling forms, and has three possible paths:

1. When initially loading the page in a browser, the form is simply created and rendered.
handleRequest() 1 recognizes that the form was not submitted and does nothing.
isSubmitted() 2 returnsfalse if the form was not submitted.

2. When the usersubmitsthe form, handleRequest() 3 recognizesthis and immediatelywrites
the submitteddatabackinto the task anddueDatepropertiesof the $task object.Then this
objectis validated.If it is invalid (validation is coveredin thenext section),isValid() 4 returns
false , so the form is rendered together with all validation errors;

1. http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_handleRequest

2. http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_isSubmitted

3. http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_handleRequest

4. http://api.symfony.com/master/Symfony/Component/Form/FormInterface.html#method_isValid

PDF brought to you by

generated on July 28, 2016

Chapter 14: Forms | 143

http://sensiolabs.com

	The Book Version: master generated on July 28, 2016
	

	Contents at a Glance
	Symfony and HTTP Fundamentals
	HTTP is Simple
	Step1: The Client Sends a Request
	Step 2: The Server Returns a Response
	Requests, Responses and Web Development

	Requests and Responses in PHP
	Requests and Responses in Symfony
	Symfony Request Object
	Symfony Response Object

	The Journey from the Request to the Response
	The Front Controller
	Stay Organized
	The Symfony Application Flow
	A Symfony Request in Action

	Symfony: Build your App, not your Tools
	Standalone Tools: The Symfony Components
	The Full Solution: The Symfony Framework

	Symfony versus Flat PHP
	A Simple Blog in Flat PHP
	Isolating the Presentation
	Isolating the Application (Domain) Logic
	Isolating the Layout

	Adding a Blog "show" Page
	A "Front Controller" to the Rescue
	Creating the Front Controller
	Add a Touch of Symfony
	The Sample Application in Symfony
	Better Templates

	Where Symfony Delivers
	Learn more from the Cookbook

	Installing and Configuring Symfony
	Installing the Symfony Installer
	Linux and Mac OS X Systems
	Windows Systems

	Creating the Symfony Application
	Basing your Project on a Specific Symfony Version

	Creating Symfony Applications without the Installer
	Installing Composer Globally
	Creating a Symfony Application with Composer

	Running the Symfony Application
	Checking Symfony Application Configuration and Setup
	Updating Symfony Applications
	Installing the Symfony Demo Application
	Installing a Symfony Distribution
	Using Source Control
	Checking out a versioned Symfony Application

	Beginning Development

	Create your First Page in Symfony
	Creating a Page: Route and Controller
	Creating a JSON Response

	Dynamic URL Patterns: /lucky/number/{count}
	Rendering a Template (with the Service Container)
	Using the templating Service
	Create the Template

	Exploring the Project
	Application Configuration
	What's Next?

	Controller
	Requests, Controller, Response Lifecycle
	A Simple Controller
	Mapping a URL to a Controller
	Route Parameters as Controller Arguments

	The Base Controller Class
	Generating URLs
	Redirecting
	Rendering Templates
	Accessing other Services

	Managing Errors and 404 Pages
	The Request object as a Controller Argument
	Managing the Session
	Flash Messages

	The Request and Response Object
	JSON Helper
	File helper

	Creating Static Pages
	Forwarding to Another Controller
	Validating a CSRF Token
	Final Thoughts
	Learn more from the Cookbook

	Routing
	Routing in Action
	Routing: Under the Hood
	Creating Routes
	Basic Route Configuration
	Routing with Placeholders
	Required and Optional Placeholders
	Adding Requirements
	Adding HTTP Method Requirements
	Adding a Host Requirement
	Completely Customized Route Matching with Conditions
	Advanced Routing Example
	Special Routing Parameters

	Controller Naming Pattern
	Route Parameters and Controller Arguments
	Including External Routing Resources
	Prefixing Imported Routes
	Adding a Host Requirement to Imported Routes

	Visualizing & Debugging Routes
	Generating URLs
	Generating URLs with Query Strings
	Generating URLs from a Template
	Generating Absolute URLs

	Summary
	Learn more from the Cookbook

	Creating and Using Templates
	Templates
	Twig Template Caching

	Template Inheritance and Layouts
	Template Naming and Locations
	Referencing Templates in a Bundle
	Template Suffix

	Tags and Helpers
	Including other Templates
	Embedding Controllers
	Asynchronous Content with hinclude.js
	Linking to Pages
	Linking to Assets

	Including Stylesheets and JavaScripts in Twig
	Global Template Variables
	Configuring and Using the templating Service
	Overriding Bundle Templates
	Overriding Core Templates

	Three-level Inheritance
	Output Escaping
	Output Escaping in Twig
	Output Escaping in PHP

	Debugging
	Syntax Checking
	Template Formats
	Final Thoughts
	Learn more from the Cookbook

	Configuring Symfony (and Environments)
	Default Configuration Dump
	Environments

	Environment Configuration

	The Bundle System
	Creating a Bundle
	Bundle Directory Structure

	Databases and Doctrine
	A Simple Example: A Product
	Configuring the Database
	Creating an Entity Class
	Add Mapping Information
	Generating Getters and Setters
	Creating the Database Tables/Schema
	Persisting Objects to the Database
	Fetching Objects from the Database
	Updating an Object
	Deleting an Object

	Querying for Objects
	Querying for Objects with DQL
	Querying for Objects Using Doctrine's Query Builder
	Custom Repository Classes

	Entity Relationships/Associations
	Relationship Mapping Metadata
	Saving Related Entities
	Fetching Related Objects
	Joining Related Records
	More Information on Associations

	Configuration
	Lifecycle Callbacks
	Doctrine Field Types Reference
	Summary
	Learn more

	Databases and Propel
	Testing
	The PHPUnit Testing Framework
	Unit Tests
	Functional Tests
	Your First Functional Test

	Working with the Test Client
	Browsing
	Accessing Internal Objects
	Accessing the Container
	Accessing the Profiler Data
	Redirecting

	The Crawler
	Traversing
	Extracting Information
	Links
	Forms
	Adding and Removing Forms to a Collection

	Testing Configuration
	PHPUnit Configuration

	Learn more

	Validation
	The Basics of Validation
	Using the validator Service
	Validation and Forms

	Configuration
	Constraints
	Supported Constraints
	Basic Constraints
	String Constraints
	Number Constraints
	Comparison Constraints
	Date Constraints
	Collection Constraints
	File Constraints
	Financial and other Number Constraints
	Other Constraints
	Constraint Configuration

	Translation Constraint Messages
	Constraint Targets
	Properties
	Getters
	Classes

	Validation Groups
	Group Sequence
	Group Sequence Providers

	Validating Values and Arrays
	Final Thoughts
	Learn more from the Cookbook

	Forms
	Creating a Simple Form
	Building the Form
	Rendering the Form
	Handling Form Submissions
	Submitting Forms with Multiple Buttons

	Form Validation
	Validation Groups
	Disabling Validation
	Groups based on the Submitted Data
	Groups based on the Clicked Button

	Built-in Field Types
	Text Fields
	Choice Fields
	Date and Time Fields
	Other Fields
	Field Groups
	Hidden Fields
	Buttons
	Base Fields
	Field Type Options

	Field Type Guessing
	Field Type Options Guessing

	Rendering a Form in a Template
	Rendering each Field by Hand
	Twig Template Function Reference

	Changing the Action and Method of a Form
	Creating Form Classes
	Defining your Forms as Services

	Forms and Doctrine
	Embedded Forms
	Embedding a Single Object
	Embedding a Collection of Forms

	Form Theming
	Form Fragment Naming
	Template Fragment Inheritance
	Global Form Theming
	Twig
	PHP

	CSRF Protection
	Using a Form without a Class
	Adding Validation

	Final Thoughts
	Learn more from the Cookbook

	Security
	1) Initial security.yml Setup (Authentication)
	A) Configuring how your Users will Authenticate
	B) Configuring how Users are Loaded
	Loading Users from the Database

	C) Encoding the User's Password
	D) Configuration Done!

	2) Denying Access, Roles and other Authorization
	Roles
	Add Code to Deny Access
	Securing URL patterns (access_control)
	Securing Controllers and other Code
	Access Control in Templates
	Securing other Services

	Checking to see if a User is Logged In (IS_AUTHENTICATED_FULLY)
	Access Control Lists (ACLs): Securing individual Database Objects

	Retrieving the User Object
	Always Check if the User is Logged In
	Retrieving the User in a Template

	Logging Out
	Dynamically Encoding a Password
	Hierarchical Roles
	Stateless Authentication
	Checking for Known Security Vulnerabilities in Dependencies

	Final Words
	Learn More from the Cookbook

	HTTP Cache
	Caching on the Shoulders of Giants
	Caching with a Gateway Cache
	Types of Caches
	Symfony Reverse Proxy

	Introduction to HTTP Caching
	The Cache-Control Header
	Public vs Private Responses
	Safe Methods
	Caching Rules and Defaults

	HTTP Expiration, Validation and Invalidation
	Expiration
	Expiration with the Expires Header
	Expiration with the Cache-Control Header
	Validation
	Validation with the ETag Header
	Validation with the Last-Modified Header
	Optimizing your Code with Validation
	Varying the Response
	Expiration and Validation
	More Response Methods
	Cache Invalidation

	Using Edge Side Includes
	Using ESI in Symfony

	Summary
	Learn more from the Cookbook

	Translations
	Configuration
	Basic Translation
	The Translation Process

	Message Placeholders
	Pluralization
	Translations in Templates
	Twig Templates
	PHP Templates

	Translation Resource/File Names and Locations
	Fallback Translation Locales
	Handling the User's Locale
	The Locale and the URL
	Setting a Default Locale

	Translating Constraint Messages
	Translating Database Content
	Debugging Translations
	Summary

	Service Container
	What is a Service?
	What is a Service Container?
	Creating/Configuring Services in the Container
	Service Parameters
	Array Parameters

	Importing other Container Configuration Resources
	Importing Configuration with imports
	Importing Configuration via Container Extensions

	Referencing (Injecting) Services
	Using the Expression Language
	Optional Dependencies: Setter Injection
	Accessing the Request in a Service

	Making References Optional
	Setting Missing Dependencies to null
	Ignoring Missing Dependencies

	Core Symfony and Third-Party Bundle Services
	Tags
	Debugging Services
	Learn more

	Performance
	Use a Byte Code Cache (e.g. APC)
	Further Optimizations

	Use Composer's Class Map Functionality
	Caching the Autoloader with APC
	Use Bootstrap Files
	Bootstrap Files and Byte Code Caches

